D e s c r i p t i o n Description Description
海女美术大学食堂的饭卡有一种很诡异的设计,即在购买之前判断余额。如果购买一个商品之前,卡上的剩余金额大于或等于 5 5 5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够)。所以大家都希望尽量使卡上的余额最少。
某天,食堂中有 n n n种菜出售,每种菜可购买一次。已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。
I
n
p
u
t
Input
Input
第一行为正整数
n
n
n,表示菜的数量。
n
≤
1000
n≤1000
n≤1000。
第二行包括 n n n个正整数,表示每种菜的价格。价格不超过 50 50 50。
第三行包括一个正整数 m m m,表示卡上的余额。 m ≤ 1000 m≤1000 m≤1000。
O
u
t
p
u
t
Output
Output
输出一行,包含一个整数,表示卡上可能的最小余额。
S a m p l e Sample Sample I n p u t Input Input 1 1 1
1
50
5
S a m p l e Sample Sample O u t p u t Output Output 1 1 1
-45
S a m p l e Sample Sample I n p u t Input Input 2 2 2
10
1 2 3 2 1 1 2 3 2 1
50
S a m p l e Sample Sample O u t p u t Output Output 2 2 2
32
思路:
1)如果 m m m小于 5 5 5,那么就不能买任何的菜,这种情况就直接输出 m m m即可
2) m m m大于等于 5 5 5的情况。要使卡上的余额最少,那么首先我们预留出 5 5 5元,保证能买到最贵的菜,然后将剩下的 m − 5 m - 5 m−5元尽可能花完;此时就相当于用 m − 5 m - 5 m−5元买 i i i件物品使其价值最大,就转换成了一个 01 01 01背包问题,由于不需要计算物品的数量,所以用一个一维数组表示即可
- s o r t sort sort排序,找到最贵的菜 a [ n − 1 ] a[n - 1] a[n−1]
- d p [ j ] dp[j] dp[j]表示 j j j元能买到的最大价值,由 01 01 01背包,就有两种选择,如果不选择当前菜,那么 d p [ j ] = d p [ j ] dp[j] = dp[j] dp[j]=dp[j];如果选择当前菜,那么 d p [ j ] = d p [ j − a [ i ] ] + a [ i ] dp[j] = dp[j - a[i]] + a[i] dp[j]=dp[j−a[i]]+a[i]
- 动态转移方程为 d p [ j ] = m a x ( d p [ j ] , d p [ j − a [ i ] ] + a [ i ] ) dp[j] = max(dp[j], dp[j - a[i]] + a[i]) dp[j]=max(dp[j],dp[j−a[i]]+a[i])
- 最后余额为: m − d p [ m − 5 ] − a [ n − 1 ] m - dp[m - 5] - a[n - 1] m−dp[m−5]−a[n−1]
#include <iostream>
#include <algorithm>
using namespace std;
int n, m;
int a[1005], dp[1005];
int main() {
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
cin >> m;
sort(a, a + n);
if (m < 5) {
cout << m << endl;
} else {
for (int i = 0; i < n - 1; ++i) {
for (int j = m - 5; j >= a[i]; --j) {
dp[j] = max(dp[j], dp[j - a[i]] + a[i]);
}
}
cout << m - dp[m - 5] - a[n - 1] << endl;
}
return 0;
}