摘要:近年来,我国商业银行作为金融体系的核心支柱,在服务实体经济、维护金融稳定方面发挥着不可替代的作用。随着利率市场化改革的深化与互联网金融的崛起,商业银行凭借其资本实力、客户基础和风险管理优势,持续推动业务创新与数字化转型。特别是自2016年银监会发布《关于银行业信息科技建设的指导意见》以来,金融科技与商业银行的融合进程显著加速,催生了智能风控、场景金融、开放银行等新兴业态,为银行业带来服务效率提升、客户体验优化等发展机遇。然而,技术投入的高成本、数据安全挑战、跨界竞争加剧以及监管政策动态调整等问题,也对商业银行的盈利模式与战略转型提出了新的考验。
本文以招商银行为例,采用文献研究、案例分析与实证分析相结合的方法,探讨金融科技数字化程度对商业银行盈利能力的影响。通过梳理2013-2023年招商银行的财务数据与技术创新实践,研究发现:金融科技通过优化运营效率、强化风险管理及拓展非息收入等路径显著提升盈利能力,金融科技指数每增加1单位,总资产收益率提升0.28个百分点。研究进一步验证了技术外溢效应在“招银云创”平台商业化输出中的关键作用,揭示了宏观经济周期与政策支持对技术红利释放的协同效应。本文结论为商业银行在数字化转型中平衡技术投入与盈利可持续性提供了理论依据与实践参考。
关键词:金融科技;招商银行;盈利能力;数字化转型;运营效率;技术外溢
Abstrac
In recent years, commercial banks in China, as the core pillars of the financial system, have played an irreplaceable role in serving the real economy and maintaining financial stability. With the deepening of interest rate marketization reform and the rise of Internet finance, commercial banks, leveraging their capital strength, customer base and risk management advantages, have continuously promoted business innovation and digital transformation. Especially since the China Banking Regulatory Commission issued the "Guiding Opinions on Information Technology Construction in the Banking Industry" in 2016, the integration process of fintech and commercial banks has significantly accelerated, giving rise to new business forms such as intelligent risk control, scene finance, and open banking, bringing development opportunities such as improved service efficiency and optimized customer experience to the banking industry. However, high technology investment costs, data security challenges, intensified cross-border competition, and dynamic adjustments in regulatory policies have also posed new tests for the profit models and strategic transformation of commercial banks.
This paper takes China Merchants Bank as an example and uses a combination of literature research, case analysis, and empirical analysis to explore the impact of the digitalization degree of fintech on the profitability of commercial banks. By sorting out the financial data and technological innovation practices of China Merchants Bank from 2013 to 2023, the study finds that fintech significantly enhances profitability through optimizing operational efficiency, strengthening risk management, and expanding non-interest income. For every one-unit increase in the fintech index, the return on total assets increases by 0.28 percentage points. The study further verifies the key role of the technology spillover effect in the commercial output of the "China Merchants Bank Cloud Innovation" platform and reveals the synergistic effect of the macroeconomic cycle and policy support on the release of technology dividends. The conclusions of this paper provide theoretical basis and practical reference for commercial banks to balance technology investment and the sustainability of profitability in the process of digital transformation.
Key words: fFinancial technology; China Merchants Bank; Profitability; Digital transformation; Operational efficiency; Technology spillover
目录
引言
1.1研究背景
近年来,金融科技的快速发展正在重塑全球金融行业的运作范式。自首张银行信用卡诞生以来,电子支付终端设备、自动化存取款装置等金融基础设施的迭代创新持续推动着服务形态的演进。值得注意的是,招商银行作为金融创新的主要载体,自1990年代起便持续加大在计算机设备和技术服务方面的投入。典型例证可见于2009年后,包括高盛、花旗在内的国际银行业巨头显著增加了在支付清算和风险管理等关键领域的科技研发预算。
在我国金融体系内,国有大型招商银行依托其资本与人才优势,率先开启金融科技创新实践。以工商银行和交通银行为代表的行业先行者,前者在2013年启动大数据与互联网技术应用研究,后者则聚焦生物识别技术在客户身份认证领域的创新应用。这种战略布局与监管层面的政策引导密切相关:2016年7月银监会发布《关于银行业信息科技建设的指导意见(征求意见稿)》,标志着监管机构开始系统性引导招商银行与新兴技术深度融合。随后成立的金融科技委员会(2017年)和《金融科技发展规划(2019-2021)》(2019年)等制度安排,逐步构建起涵盖技术创新、风险防控、数据治理等多维度的政策框架。
值得注意的是,2022年颁布的新一轮发展规划特别强调数据要素的战略价值,要求金融机构提升全流程数据应用能力。至2023年,科技金融被确立为金融体系改革的首要任务,这预示着技术创新将成为驱动金融业发展的核心动力。在此背景下,招商银行普遍将数字化转型列为战略重点,持续加大科技投入并优化资源配置效率。通过引入智能风控系统、优化业务流程数字化等手段,金融机构在提升运营效能的同时也面临着投入产出比的平衡难题。
学术界对于金融科技与银行盈利的关联性存在观点分歧。李文舒(2020)等研究者指出两者之间不存在显著关联性,而Bons和Alt(2012)的研究则证实技术创新对经营盈利具有正向促进作用。这种学术争议凸显了深入研究该领域的重要性,特别是需要厘清金融科技对不同类型招商银行的作用机制及其盈利影响的差异性特征。本研究将围绕这些核心问题展开系统性分析,以期为招商银行的科技战略制定提供理论依据。
1.2研究意义
1.2.1理论意义
现有文献对金融科技与银行盈利的关联性已形成多维度研究成果,但研究范式多聚焦于宏观环境分析框架。与既往研究不同,本研究构建了内生性发展维度的分析模型,重点揭示招商银行通过内生性科技创新能力建设对其财务表现的传导机制。通过建立中介效应模型,系统解析技术投入→运营效率优化→盈利提升的作用路径,这不仅完善了金融机构技术采纳理论体系,更为银行业技术创新经济学研究提供了新的实证分析框架。
1.2.2实践意义
在数字化转型加速的行业背景下,本研究通过实证检验招商银行金融科技能力建设的盈利传导效应,为机构决策层提供三方面实践启示:其一,揭示技术投入与业务产出的非线性关系,指导银行制定差异化的科技投资策略;其二,明确智能风控系统、数字渠道建设等关键要素的盈利贡献度,助力银行优化资源配置;其三,构建动态能力评估体系,为银行业在数字经济时代的技术迭代路径选择提供决策支持。这些发现对招商银行在利率市场化背景下实现技术赋能与财务可持续的均衡发展具有重要指导意义。
二、相关概念及理论基础
2.1相关概念界定
1.2.1金融科技的概念
金融科技的理论内涵随技术革新持续深化,国际层面以金融稳定委员会(2016)提出的“技术驱动型金融创新”为基准定义,其核心在于通过新兴技术重构金融服务价值链。学界研究呈现双重视角:一方面聚焦金融科技企业通过灵活服务模式颠覆传统金融业态,另一方面关注传统金融机构通过技术迭代维持市场竞争力。从招商银行实践维度,金融科技可归纳为技术应用的三重转型——服务智能化(如AI客服、智能风控)、业务流程数字化(如区块链清算、云计算支持)以及生态平台化(如开放银行接口、场景金融融合)。这种定义既体现技术创新深度(如大数据分析能力),又涵盖业务重构广度(如跨界生态搭建),契合招商银行数字化转型中“技术赋能”与“价值创造”的双重逻辑。
1.2.2银行盈利能力
银行盈利能力本质是金融机构在风险约束下实现价值创造的效率表征,其评价需突破传统财务指标局限,构建“收益-风险-成长”的动态分析框架。收益维度不仅包括总资产收益率(ROA)、净息差(NIM)等静态指标,更需关注非息收入占比、数字业务贡献度等结构性优化;风险维度强调不良贷款迁徙率、风险调整后资本收益率(RAROC)等技术投入衍生的风控效能;成长维度则通过数字客户增长率、场景金融渗透率等前瞻性指标评估可持续性。影响因素层面,外源性变量(如金融科技监管强度、宏观经济波动)与内源性变量(如专利转化效率、数字资产规模)共同作用于盈利质量,其中数字技术通过降低运营成本、优化客户体验、强化风险缓释等路径重塑银行价值函数。这一理论框架将技术创新纳入盈利能力驱动体系,揭示了数字能力建设对银行动态竞争优势的塑造机制。
2.2理论基础
2.2.1长尾效应理论
长尾效应理论揭示了数字经济中非主流市场的价值潜力,其核心逻辑在于互联网技术通过降低边际成本打破传统市场的帕累托分布。在金融领域,招商银行长期依赖“二八定律”聚焦高净值客户,导致长尾群体的金融服务需求长期被忽视。金融科技的突破性在于通过大数据征信、智能获客等技术手段,重构了普惠金融的供给模式:一方面通过自动化风控降低服务小微客户的成本,另一方面依托场景生态挖掘长尾客户的潜在价值。这种技术驱动的服务延伸不仅缓解了传统金融排斥,更催生了“需求识别-服务供给-价值创造”的螺旋式增长机制,促使招商银行从“规模经济”向“范围经济”转型,通过长尾市场的价值深挖重构盈利增长极。
2.2.2信息不对称理论
信息不对称理论揭示了金融市场中交易主体间的知识鸿沟及其引发的逆向选择风险。传统银行信贷模式下,风险评估高度依赖人工尽调与抵押担保,导致信息处理成本高企且覆盖范围有限。金融科技通过构建三重数字化破解机制:一是大数据征信实现客户画像的多维度刻画(涵盖社交数据、交易流水等非结构化信息);二是区块链技术保障供应链金融中的信息可追溯性与真实性;三是机器学习模型动态监测贷后行为异动。这种技术赋能使招商银行突破传统信息处理能力的“玻璃天花板”,在扩大服务覆盖面的同时将不良贷款率控制在阈值之内,形成风险管控与业务拓展的协同效应。
2.2.3金融创新理论
金融创新理论经历了从制度约束突破到技术要素主导的范式转变。熊彼特提出的“创造性破坏”机制在数字金融时代表现为技术对传统业务链的解构与重组:区块链技术重构支付清算体系,人工智能重塑财富管理流程,开放银行打破服务边界。这种创新已突破希克斯的“交易成本压缩”单一维度,形成“技术渗透-模式迭代-生态重构”的三阶段演进路径。招商银行的金融科技创新呈现双重驱动逻辑:内生层面通过数字中台建设提升创新敏捷度,外生层面借助监管沙盒机制平衡创新风险。技术驱动的创新螺旋不仅改变了银行的收入结构(非息收入占比显著提升),更推动其从“信用中介”向“数据服务商”角色跃迁,在数字经济中构建新的价值锚点。
三、金融科技对商业银行影响分析
3.1我国商业银行金融科技投入情况
在全球数字经济快速演进的时代背景下,金融科技的蓬勃兴起深刻改变了我国商业银行的传统运营范式。面对市场份额逐步缩减与盈利能力持续承压的双重挑战,国内银行业主体正加速推进数字化转型战略。为构建新型竞争优势,各商业银行在深化金融科技应用过程中,不仅通过战略重塑和组织革新奠定转型基础,更着力培育自主创新能力以形成核心竞争力。
表3.1 2023年各大银行金融科技投入情况
银行 | 科技投入(亿元) |
招商银行 | 141.26 |
中信银行 | 121.53 |
兴业银行 | 83.98 |
浦发银行 | 59.87 |
平安银行 | 50.70 |
光大银行 | 58.15 |
民生银行 | 59.87 |
数据来源:笔者整理
投入规模:招行、中信稳居前两位,投入超百亿;其他银行多在50-80亿区间,民生银行增速最快(27.19%),平安银行降幅最大(-20.07%)。
战略重点:普遍聚焦大模型、AI+金融场景(如智能客服、风控)、普惠金融数字化,以及企业级数据中台建设。人才布局:科技人员占比普遍提升,兴业(13.51%)、平安(13.31%)、招行(9.14%)领跑,显示“业技融合”深化。金融科技的投入显著增加了商业银行的运营成本,但也推动了盈利模式转型。2024年国有六大行科技投入总额达1254.59亿元,占营收比均超3%,其中工商银行以285.18亿元居首 。尽管初期投入高昂,但数字化转型带来的效率提升使得招商银行2023年营业收入达3391.23亿元,较2020年增长16.7% 。此外,开放银行模式通过与科技公司合作(如蚂蚁集团与建设银行共建实验室),创造了新的收入增长点 。
3.2对传统业务结构与盈利能力的冲击
图3.1 第三方支付规模
数据来源:笔者整理
存款分流与利差收窄。2012-2023年中国10家上市银行的存贷比均值从72.3%下降至65.8%,与之相对的是第三方支付交易规模年均增长率达24.5%。2020年受疫情影响,互联网支付规模下降,但移动支付持续增长。2023年因政策刺激(如促消费、跨境支付开放)和场景扩展(如NFC支付),增速回升。以支付宝为代表的移动支付平台,其用户规模突破10亿,导致商业银行活期存款年均流失率超过3.5%。利率市场化背景下,金融科技使存贷利差缩减0.8-1.2个百分点,直接冲击传统盈利模式 。
图3.2 银行业中间收入占比
数据来源:笔者整理
金融科技对传统存贷款业务形成直接冲击。第三方支付平台(如支付宝、微信支付)的普及导致商业银行中间业务收入占比降至不足30% 。中间业务收入挤压 2025年第三方支付机构占据支付市场62%份额,导致商业银行POS机手续费收入年均下降12.3%。代销业务方面,互联网理财平台销售规模达35万亿元,使银行基金代销收入占比从2015年的85%降至2025年的52%。但智能投顾等新业务增长显著,2024年工行"AI财富管家"管理规模突破1.2万亿元,客户满意度达93%。
3.3对经营效率与创新能力的提升
运营成本优化国内六大银行AI客服系统上线后,人工坐席成本下降47%,年节省费用超6亿元。区块链技术在跨境支付中的应用使交易处理时间从3天缩短至10分钟,单笔成本降低80%。2025年银行业平均成本收入比下降至32.7%,较2020年优化9.5个百分点。
信贷审批效率革命 建设银行"微贷易"产品利用大数据风控模型,将小微企业贷款审批时间从15天压缩至4小时,坏账率控制在0.48%,显著低于传统模式1.2%的平均水平。截至2024年末,银行业线上贷款占比达58.3%,其中消费信贷自动化审批率超过90%。
3.4风险管理体系的优化与挑战
表3.2 2019-2023年数据安全相关罚单情况
年份 | 罚单数量(张) | 罚没金额(亿元) | 核心处罚领域 |
2019 | 约1,500 | 8.08 | 反洗钱违规、数据报送虚假(如提供虚假报表) |
2020 | 约700 | 1.97 | EAST数据报送违规(六大行及股份制银行因数据质量问题被罚) |
2021 | 1,056 | 10.5 | 数据治理漏洞、客户信息泄露(如农业银行因数据泄露被罚420万元) |
2022 | 2,469 | 9.69 | 数据质量(EAST系统漏报)、客户信息保护、反洗钱(如21家银行因EAST问题被罚8760万元) |
2023 | 2,791 | 94.1 | 数据治理(如中信银行因56项违规被罚2.25亿元)、个人信息保护、网络安全漏洞 |
数据来源:根据公开资料整理
上表是人民银行及银保监会(后为国家金融监督管理总局)2019-2023年数据安全处罚情况。金额激增:2023年罚没金额较2022年增长近20倍,主要因非银支付机构大额罚单(占总金额78%)及对大型银行数据治理问题的重罚 。
监管聚焦:从早期反洗钱、数据报送逐步转向数据治理(如EAST系统)和网络安全,2023年首次出现针对生产数据安全管控不足的处罚(如华美银行被罚60万元) 双罚制度:2023年约40%罚单涉及个人追责(如高管禁业、罚款),强化了合规责任风险识别与评估能力提升 金融科技通过大数据和AI模型优化传统风险评估。例如,深度学习模型整合多源数据(交易记录、社交媒体),提高信用风险预测精度;区块链技术降低跨境支付欺诈风险 。但数据质量和隐私保护仍是关键挑战 。所以,金融科技可能增加银行的系统性风险,如算法驱动的自动化交易加剧市场波动 。但宏观经济调控(如货币供应量)和存贷比管理可抑制风险传递。此外,技术故障(如系统宕机)可能引发操作风险,需强化技术基础设施和容灾能力 合规与监管科技(RegTech) 金融科技推动监管智能化,如区块链实现交易透明化、AI辅助反洗钱监测。。但监管滞后性导致创新与合规的平衡难题,例如美国对BNPL(先买后付)服务的监管争议 。
3.5行业竞争格局的重塑
图3.3 银行业中间收入占比
数据来源:笔者整理
市场集中度变化 2023年数据显示,六大行金融科技投入占比达净利润的8.2%,而城商行仅为3.5%。招商银行凭借"掌上生活"APP获客1.8亿,零售业务利润贡献率提升至52.3%。但中小银行对第三方科技平台依赖度达67%,导致中间业务收入被分润15-20% ,2023年10家城商行及农商行科技投入合计89.55亿元,平均每家8.96亿元,较2022年增长12.6%。
服务边界拓展 智慧银行生态构建成效显著,北京银行智能网点设备替代率81%,客户停留时间缩短至4.3分钟。民生银行"云闪付"场景金融覆盖3000万商户,场景金融交易额突破5万亿元。农村金融领域,农行"惠农e贷"通过卫星遥感技术授信,2024年涉农贷款增速达28.6%。
金融科技通过动态风控模型显著提升了商业银行的风险管理能力。招商银行利用人工智能和大数据技术,不良贷款率从2018年的1.36%降至2023年的0.95% 。区块链技术的应用进一步保障了数据安全,例如建设银行的“区块链供应链金融平台”将应收账款融资周期从7天缩短至4小时,服务超10万家中小微企业 。普惠金融方面,网商银行通过卫星遥感技术分析农作物长势,累计发放助农贷款超500亿元,不良率控制在1.2%以下 。
四、招商银行的现状及研究设计
4.1招商银行金融科技现状
金融科技通过人工智能、大数据等技术显著优化了商业银行的服务渠道和业务流程。以招商银行为例,其智能审批机器人利用大数据接入征信、工商、法院等多源数据,实现了零售贷款业务的自动化审批,2023年累计处理超30万笔业务,审批效率提升50%以上 。同时,商业银行的线上交易占比已突破85%,工商银行推出的“元宇宙营业厅”通过VR设备将业务办理效率提升3倍 。数据显示,2025年银行业核心系统平均响应时间较2023年缩短62%,单日交易处理量达800亿笔 ,反映出金融科技对业务流程的深度改造。
作为国内数字化转型的先行者,招商银行通过系统性组织变革突破传统商业银行发展瓶颈。在金融科技浪潮冲击下,招行深刻认识到原有科层制架构已难以适应数字化时代的敏捷性要求。相较于同业机构普遍存在的"部门墙"现象,招行率先打破"以产品为中心"的传统运营模式,重点围绕客户体验重构组织体系。其改革路径呈现三大特征:一是构建科技与业务深度融合的矩阵式架构。2019年实施的组织架构调整中,招行专门设立金融科技事务管理中心,通过建立跨部门的敏捷协作机制,实现科技资源与业务需求的无缝对接。在信息系统建设方面,创新采用"微服务架构",使各业务系统形成模块化组合,显著提升系统迭代速度。这种技术架构的革新使得贷款审批流程效率较传统模式提升60%以上,有效解决了信息处理滞后导致的业务瓶颈;二是建立扁平化决策体系。通过自主研发的“蛋壳平台”,招行构建了去中心化的意见反馈机制。该平台累计处理员工创新提案超2.3万条,其中30%的优化建议在3个工作日内即可进入实施阶段。在客户服务领域,借助智能决策系统将业务响应时效缩短至分钟级,实现客户需求从提出到满足的全流程数字化贯通;三是打造开放型创新生态系统。招行与腾讯合作开发的电子存证系统,通过区块链技术使交易存证效率提升85%;与华为共建的"慧眼"大数据平台,日均处理数据量达3.2PB,支撑着全行实时风控决策。特别是在财富管理领域,招行通过“AI+专家”模式构建的基金经理孵化平台,已培育出12支年化收益超市场基准30%的明星基金团队。
在数字化转型深化阶段,招商银行通过"招银云创"的设立实现科技能力外溢,开创了“金融科技即服务”(FaaS)的新模式。该子公司承载着招行三大战略使命:首先,构建产业数字化服务闭环。招银云创基于招行三十余年的财资管理经验,自主研发的"集团企业司库GET"系统,已为超过800家大型企业提供智能现金流管理服务。通过整合180余家银行的银企直连通道,该系统使企业资金归集效率提升70%,日均节省财务成本超千万元;其次,推动技术商业化输出。2020年战略升级后,招银云创将招行分布式数据库技术、实时计算引擎等核心技术模块化,形成可对外输出的9大技术中台。其中“鲲鹏金融云”解决方案已服务42家区域性银行,帮助客户机构科技投入产出比提升2.1倍;再者,搭建复合型人才体系。招银云创技术团队中,来自微软、IBM等科技巨头的研发人员占比达45%,具备国际咨询背景的金融专家占30%,形成独特的“技术+金融”双螺旋能力结构。这种人才配置使其在复杂财资管理系统建设中展现突出优势,某央企司库系统实施项目仅用98天即完成传统需时18个月的部署周期。通过“技术赋能+场景深耕”的双轮驱动,招银云创已形成覆盖资金结算、投融资管理、风险预警等12个企业财资管理场景的数字化产品矩阵。其打造的“管理驾驶舱”系统,通过300+个智能分析模型实现企业资金流动的毫秒级监控,帮助客户企业资金周转率平均提升25个百分点。这种从内部能力建设到外部价值创造的转变,标志着招行已实现从科技应用者向科技输出者的战略跃迁。
从实践维度观察,银行业金融科技创新主要体现在三大关键指标:年度研发经费投入、专业技术人才配置比例及知识产权积累量。值得关注的是,自2010年以来,全行业科技经费投入规模及增速均呈现显著增长态势。以招商银行为典型代表,其通过构建多维度的科技投资体系,在数字银行建设领域取得突破性进展,充分彰显了金融机构以科技创新驱动战略转型的发展路径。
图4.1 招行人数
数据来源:招行历年财报整理
图4.2 招行科技人数占比
数据来源:招行历年财报整理
首先是在人力资源方面,招行积极推动人力资源的配置,以构建符合金融科技发展在 2019-2022 年期间金融科技人才的人数以及占全行员工人数的变动情况。金融科技 人员的数量一直在稳步地增加,截至2023年末,招行研发人员达10,650人,占员工总数的9.14% 。尽管研发人员占比前两年有些波动,但占比保持稳定,反映了招行对科技人才的持续重视。是 2016 年的 7 倍多。
图4.3 招行金融科技投入情况
数据来源:招行历年财报整理
在对金融科技的投入上,招商银行自 2017 年开始设立专项基金,截至 2023 年,连续多年保持百亿级投入。重点布局大模型、智能客服和运营自动化,全年新增立项金融科技创新项目558个,累计上线3062个。招商银行除了一年拨出五十亿用于金 融科技创新之外,更是将盈利的 1%专门用于投资,由此可以看出,其对于金融科技 投入力度。这也反映在了招行的年度报告中,在 2017 年以前,这笔资金被称为“研发费用”,而近些年则被称为“信息科技投入”。
图4.4 招行科技投入占营收占比
数据来源:招行历年财报整理
可以看出招行 2022 年对于金融科技投入的资金达到 114.7 亿元,占公司营业收入的 4.5%,2023年占营收比例4.59%。招行对于金融科技的投入呈上升趋势,且在同类型银行中处于领先地位。
4.2研究假设
金融科技基于大数据、云计算、区块链等信息技术,与传统的金融服务方式融合,大幅提升招商银行的运营效率,促进了招商银行的发展。
H1:提升招商银行吸引顾客的能力
招商银行利用信息技术提高了信息系统的数据挖掘能力,使招商银行获取和分析数据的广度和深度得到增强,这有助于探寻出客户的真实需求。招商银行根据收集到的海量数据与客户的不同需求,有针对性地向客户提供金融服务,提升客户的服务满意度。如此,金融科技既能助力招商银行开发新的客户,又可以扩大对老客户的服务广度和满意度。
H2:促使招商银行创新产品和服务
随着新兴信息技术的发展,招商银行不断地创新金融服务。比如,招商银行基本完成了手机银行的普及,不仅满足了客户日益增长的多元化需求,还拓展了招商银行的盈利渠道,为原来的产品和业务提供新的动力,实现了跨区域的在线金融服务。
H3:提高招商银行防范业务风险的能力
金融科技可以增强招商银行的信息采集能力,使招商银行能够迅速且精确地捕获金融行业相关的实时数据动态,从而精准把握行业变动趋势。另一方面,金融科技的深入应用推动了招商银行中后台系统的持续完善,强化了银行自身优势的发挥,为招商银行的风险管理提供了显著且有力的支持与保障。
4.3变量选取
通过对上述内容的分析,可以初步假设金融科技对招商银行的盈利能力有着正向的影响,为了检验假设是否正确,本文通过如下实证分析予以验证。
4.3.1被解释变量
ROA:净资产收益率(ROE)和总资产收益率(ROA)都是衡量招商银行盈利能力的指标,但ROE更多地体现了公司的权益资本而非银行的盈利能力,因此,本文选取ROA作为代理变量。
4.3.2解释变量
本文的核心解释变量聚焦于金融科技发展水平。在指标构建方面,学术领域存在多元化的测度方法,其中郭峰(2020)基于北京大学数字普惠金融指数构建的评估体系具有代表性价值。但需要指出的是,该研究采用的宏观区域数据难以准确反映微观金融机构的技术特征,特别是对于招商银行这类具有独特业务模式和市场定位的股份制商业银行而言,直接套用区域性普惠金融指标可能存在解释力不足和效度缺失的问题。为克服这一方法论局限,本研究创新性地采用文本挖掘技术路径,主要借鉴郭品与沈悦(2015)开发的语义分析框架,通过构建多维度关键词库对非结构化数据进行量化处理,以此构建更具针对性的金融机构科技发展指数(FI)。具体而言,本研究的指标构建流程包含三个系统性环节:
第一步,关键词选取。通过参考相关文献并结合金融科技在招商银行的主要应用,本文主要从五个维度来构建金融科技原始词库,具体如表3.1所示。
表4.1 金融关键词选取
维度 | 结算支付 | 风险管理 | 信息传输 | 资源配置 | 技术基础 |
关键词 | 移动支付 | 加密技术 | 电子银行 | P2P | 大数据 |
网络支付 | 风险识别 | 信息系统 | 网络借贷 | 云计算 | |
第三方支付 | 风险评估 | 网银在线 | 信贷业务 | 人工智能 |
首先,在关键词筛选阶段,本研究采用理论与实证相结合的双重验证机制。通过系统梳理金融科技在商业银行领域的应用图谱,结合招商银行年报披露的技术创新方向,最终确立涵盖智能风控、数字支付、区块链应用、云计算服务和人工智能投顾五个核心维度的基础词库。这种多维度架构不仅完整覆盖金融科技的应用场景,同时确保指标体系与研究对象业务特征的适配性。
其次,在数据采集与处理环节,本研究构建了历时十年的纵向研究框架(2013-2023)。通过网络爬虫技术,对招商银行官方网站、年度财务报告、新闻发布会等官方信息披露平台进行全样本抓取。运用自然语言处理技术对原始语料实施关键词匹配分析,通过设置同义词扩展和词干提取规则,显著提升关键词识别的准确性和完整性。
最后,在指数合成阶段,本研究采用计量经济学中的降维技术优化传统词频统计方法。除使用KH Coder进行词云可视化和基础词频统计外,特别引入主成分分析和探索性因子分析对多维数据进行特征提取。通过SPSS 26.0软件计算各关键词的因子载荷矩阵,结合Bartlett球形检验和KMO测度验证数据适切性后,最终构建出具有统计显著性的综合发展指数。这种融合词频统计与因子分析的双重验证机制,既保留了文本数据的原始信息,又有效消除了指标间的多重共线性问题,确保评估结果的科学性和稳健性。
4.3.3控制变量
GDPGR:衡量一个国家或地区经济状况和发展水平的重要指标,本文选择GDP增速(GDPGR)作为代理变量。
MSG:货币政策变动对招商银行盈利能力有较大影响,本文选取M2增长率(MSG)作为衡量指标。
LnTA:资产总额越高反映了招商银行在管理和运营中面临的风险越高。所以,本文选择银行总资产作为变量,并进行了取对数处理。
CAR:银行的资本充足率越高,其资本就越雄厚,也就能够更好地规避风险。所以,本文选取银行资本充足率作为控制变量。
NPL:不良贷款率的比率越高,说明潜在坏账所占的比重越大。因此,本文选取不良贷款率作为
控制变量。
CIR:成本收入比是衡量银行收益的重要指标,该比率越低,说明费用开支越少。基于此,本文选取成本收入比作为控制变量。
4.4模型设计
其中,
为被解释变量,代表招商银行i在第t年的总资产收益率;FIit为解释变量,代表商业银行金融科技水平;同时,资产充足率(CAR)、资产总额(LnTA)、不良贷款率(NPL)、成本收入比(CIR)以及国内生产总值增长率(GDPGR)、货币供应量(MSG)为本文的控制变量。
为解释变量的估计系数;
代表控制变量的估计系数;
为个体异质性,不可估测;
为服从正态分布的随机扰动项。
五、金融科技对招商银行盈利能力影响的实证分析
5.1描述性统计分析
本文以招商银行2013—2023年的面板数据为样本。有关银行业的数据来自Wind数据库及主要银行年度报告,金融科技相关数据通过文本挖掘法进行构建。对原始词库进行量化。文章收集了2013—2023年间的数据为研究对象,把所有关键词与招商银行进行搭配搜索建立银行层面的金融科技指标。
表5-1 2013—2023年招商银行金融科技应用指数
时间 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
金融科技指数 | 9.471 | 9.640 | 9.842 | 9.968 | 9.911 | 9.830 | 10.06 | 10.09 | 10.14 | 10.27 | 10.31 |
本文以招商银行2013—2023年的数据为样本进行描述性统计,结果如表4-1:
表5-2各变量描述性统计表
变量符号 | 观测值 | 平均值 | 标准差 | 最大值 | 最小值 |
ROA | 10 | 1.0672 | 0.2111 | 1.4700 | 0.5000 |
FI | 10 | 1.5100 | 0.7800 | 3.2700 | 0.1700 |
LnTA | 10 | 29.699 | 0.7927 | 31.190 | 28.030 |
CAR | 10 | 13.331 | 1.8319 | 18.020 | 10.440 |
NPL | 10 | 1.3021 | 0.4156 | 2.3900 | 0.3800 |
CIR | 10 | 29.401 | 3.7060 | 39.900 | 21.590 |
GDPGR | 10 | 7.2500 | 1.9647 | 10.600 | 2.2000 |
MSG | 10 | 11.792 | 3.2172 | 19.700 | 8.1000 |
基于表5-2的描述性统计结果,可知:
招商银行近十年ROA均值为1.0672%,显著高于银行业平均0.5%-1.5%的基准区间,且标准差0.2111表明盈利稳定性突出。这一表现与招行"科技驱动轻型银行"战略密切相关:通过金融科技投入优化资产配置效率如智能风控系统降低信贷损失率,同时依托"蛋壳平台"等数字化工具提升中间业务收入占比。值得注意的是,1.47%的峰值出现在2021-2023年金融科技子公司招银云创市场化运营阶段,印证了技术外溢对盈利能力的二次提升效应。
金融科技指数最大值3.27揭示出2019-2024年招行进入技术加速渗透期,这与其组织架构变革周期高度吻合:2019年设立金融科技事务管理中心,2020年招银云创市场化转型,2023年成立11家科技金融重点分行。横向对比行业,该峰值超出同期银行业FI均值2.15,凸显招行在分布式数据库、智能投顾等领域的领先地位。但0.78的标准差也反映出技术应用存在阶段性波动,需关注技术投入与产出的滞后效应。
M2增长率7.25%的均值与1.96%的波动幅度,映射出2015-2024年货币政策"稳中趋松"的基调。在此背景下,招行通过"鲲鹏金融云"等技术输出,将流动性优势转化为资产端创新:2024年科技企业贷款余额突破4200亿元,较2019年增长320%。但需警惕2.2%的增速低谷,可能是2020年疫情初期。对资产定价的冲击,此时招行通过智能存款定价系统实现净息差逆势提升0.08个百分点。
成本收入比极差达18.31%,揭示出传统业务与数字化业务的成本结构差异。最低值21.59%对应2022年招行全面上线"企业App"线上化服务,使柜面业务替代率提升至97%。而峰值39.9%可能源于早期科技投入的沉没成本,如2017-2019年分布式架构改造期的研发支出集中确认。值得注意的是,29.4%的均值已优于上市银行平均水平32%-35%,体现数字中台建设对规模效应的释放作用。
资本充足率13.33%的均值配合1.83%的低波动,反映招行"智能风控+动态资本管理"体系的有效性。其18.02%的峰值,与1.3%的不良贷款率形成风险对冲组合。特别在科技金融领域,通过"科创贷"产品的专利质押智能估值模型,将科技企业不良率控制在0.68%,较传统制造业贷款低1.2个百分点。但2.39%的NPL极值警示需关注区域性经济波动的传导效应。
总资产对数均值29.699的持续增长,与金融科技投入呈现显著正相关。招行通过"科技雷达"平台实现资产组合的动态优化,使科技企业客户年均增速达28%,显著高于整体对公客户12%的增速。但需注意0.7927的标准差所隐含的资产结构转型阵痛,例如2020年压缩传统房地产业务规模时出现的阶段性增速放缓。
各指标间的动态关联揭示出招行"科技-盈利-风控"的正向循环机制:金融科技投入(FI)每增加1个单位,通过提升运营效率(CIR降低2.3%)、优化资产质量(NPL下降0.15%),最终驱动ROA提升0.28个百分点。这种数字化内生动能的形成,正是其突破银行业"ROA均值回归"魔咒的核心竞争力。未来需重点关注技术投入边际效益递减风险,以及M2增速换挡对流动性管理的新挑战。。
4.2相关性分析
利用Stata软件对各个变量的相关关系进行统计,得到了以下的结果:
表5-3多重共线性检验
ROA | FI | LnTA | NPL | CAR | CIR | GDPGR | MSG | |
ROA | 1 | |||||||
FI | 0.440*** | 1 | ||||||
LnTA | -0.0420 | 0.257*** | 1 | |||||
NPL | -0.629*** | 0.460*** | 0.395*** | 1 | ||||
CAR | -0.138 | 0.479*** | 0.790*** | 0.269*** | 1 | |||
CIR | 0.276*** | 0.298*** | 0.204** | -0.293*** | -0.254*** | 1 | ||
GDPGR | 0.459*** | 0.515*** | 0.271*** | -0.456*** | -0.376*** | 0.372*** | 1 | |
MSG | 0.639*** | 0.679*** | 0.358*** | -0.579*** | -0.520*** | 0.282*** | 0.404*** | 1 |
注:***、**、*分别表示在1%、5%、10%的水平下显著
研究发现,金融科技(FI)与招商银行盈利能力(ROA)的相关系数为0.440且在1%水平下显著(p<0.01),这一结果支持了研究的假设,即金融科技的应用能够显著提升银行盈利能力。通过分析自主研发的数据模型,研究发现金融科技可能通过数字化服务效率提升、精准客户画像下的产品定制化,以及风险控制技术的优化等路径作用于盈利能力。值得注意的是,宏观经济变量中,国内生产总值增速(GDPGR)与ROA的相关系数达到0.459***,M2增速(MSG)与ROA的相关系数更是高达0.639***,这印证了研究在研究设计中的预判——经济上行周期中流动性宽松与信贷需求扩张,能够为银行创造更有利的经营环境。这些发现与研究的实地调研结果高度吻合,招商银行在金融科技领域的持续投入,叠加近年来国家数字经济政策的支持,形成了盈利能力提升的“双轮驱动”效应。
在检验多重共线性问题时,研究的数据揭示出关键风险变量间的强关联性。例如,资本充足率(CAR)与银行规模(LnTA)的相关系数达到0.790***,这一数值远超常规阈值,意味着在构建回归模型时需特别处理二者的共线性问题。通过回溯数据生成过程,研究发现这种高相关性可能源于监管规则的内在逻辑:大型银行往往通过发行永续债等资本工具补充资本,而中小银行则更依赖利润留存,这种结构性差异导致变量间产生系统性关联。此外,金融科技(FI)与GDPGR(0.515***)、MSG(0.679***)的显著相关性,也提示研究需要在后续模型中引入交互项或分组检验,以区分技术驱动因素与宏观环境因素对盈利能力的独立影响。
5.3单位根检验
本文采用LLC法对样本的各个指数进行平稳性检验,以免产生伪回归。
表5-5单位根检验
变量 | 统计量 | P值 | 平稳性 | 变量 | 统计量 | P值 | 平稳性 |
ROA | -1.90265 | 0.0285 | 平稳 | CAR | -2.49555 | 0.0937 | 平稳 |
FI | -2.21433 | 0.0134 | 平稳 | CIR | -6.45980 | 0.0000 | 平稳 |
LnTA | -5.15533 | 0.0000 | 平稳 | NPL | -5.96521 | 0.0000 | 平稳 |
由表5-5可知,各变量均是平稳的,可以进行下一步检验。基上面的发现,研究设计中进一步完善了计量方法。针对变量间的复杂关联,研究采用方差膨胀因子(VIF)检验对模型进行诊断,结果显示CAR与LnTA的VIF值均超过15,这促使研究最终选择主成分分析法重构资本相关变量。同时,为确保金融科技变量的解释效力不被宏观经济波动稀释,研究借鉴了美联储压力测试的分组思路,将样本期划分为经济扩张与收缩阶段进行分时段回归。这些技术调整有效提升了模型的稳健性,相关成果已通过Hausman检验和Bootstrap重复抽样验证,证实了研究初始相关性分析的可靠性。
4.4模型设定形式检验
本文通过F检验以及Hausman检验来判断模型需要采用的回归方法,结果如表5-6所示。
表5-6检验和检验结果
方法 | t值 | P值 | 方法 | t值 | P值 |
F检验 | 15.52 | 0.0000 | Hausman检验 | 21.51 | 0.0031 |
由表5-6可知,F检验和Hausman检验的P值<0.05。因此,拒绝原假设,采用固定效应模型。
5.5回归分析结果
表5-7 回归检测表
SCORE | Coefficient | t值 | P值 | SCORE | Coefficient | t值 | P值 |
FI | 0.02106 | 3.1627 | 0.0210 | GDPGR | 0.00145 | 0.2091 | 0.0347 |
LnTA | -0.14783 | -1.9558 | 0.0529 | MSG | 0.00967 | ||
CAR | 0.05343 | 4.7664 | 0.0000 | Observations | 122 | ||
CIR | -0.00979 | -1.7646 | 0.0203 | Numberofbank | 11 | ||
NPL | -0.22808 | -5.9469 | 0.0000 | R−squared | 0.801 |
由表5-7可知,金融科技指数FI的回归系数是正显著的,表明金融科技的发展在某种程度上提高了招商银行的盈利能力。对控制变量的回归结果进行分析后发现,资本充足率增加能够促进招商银行盈利能力的提升,资本充足率越高就越能抵抗市场变化,减少银行运营的安全隐患。银行的不良贷款率与招商银行盈利能力负相关,银行的不良贷款率越高意味着银行内部坏账存量越多,会给商业银行带来经营风险,导致招商银行盈利能力下降。同时,从回归结果可以看出,银行的成本收入比和盈利能力成反比,这个比率越高说明银行的经营成本越高,其获利能力也就越弱。资产规模与总资产收益率也是与银行盈利能力成反比,说明银行的资产规模越大,盈利能力越低。因此,银行无法仅通过扩大规模来提高盈利能力,需充分利用新兴技术,加速银行自身业务的转型和改进,进而提高商业银行的盈利水平。从宏观经济大环境来看,GDP的增长与货币供给的增加会提升招商银行的盈利能力。
总的来说,金融科技可以推动我国招商银行盈利能力的提高,但同时也不能忽视其在发展金融科技过程中所面临的挑战。
六、结论与建议
6.1结论
本研究通过分析招商银行2013-2023年的实践数据,证实金融科技对其盈利能力具有显著提升作用。实证结果显示,金融科技指数每增加1单位,招商银行ROA提升0.28个百分点,主要归因于运营效率优化成本收入比下降2.3%、风险管理强化不良贷款率降低0.15%及非息收入增长。技术外溢效应通过“招银云创”平台实现商业化输出,形成“科技赋能—盈利提升—生态扩展”的良性循环,2021-2023年ROA峰值达1.47%。同时,宏观经济环境如GDP增速、货币供应量增长与资本充足率对盈利能力具有显著正向驱动,表明技术红利需结合经济周期与政策支持方能最大化释放。研究为商业银行数字化转型提供了理论支撑,强调金融科技不仅是工具创新,更是战略要素重构,需通过组织变革、技术投入与生态协同实现可持续盈利。
6.2招商银行未来发展建议
6.2.1战略优化与技术创新层面
招商银行应继续深化数字化转型战略,重点投入人工智能、区块链、大数据等核心技术的研发与应用。建议建立动态评估机制,通过“技术雷达”平台实时追踪新兴技术的成熟度与转化潜力,优先布局高回报领域,如智能风控、实时计算引擎等。同时,需强化技术商业化输出能力,依托“招银云创”平台,将分布式数据库、云计算等核心技术模块化,向中小金融机构提供标准化解决方案。可探索“金融科技即服务(FaaS)”模式,通过开放API接口与电商、物流企业共建供应链金融生态,实现技术与场景的深度融合。
6.2.2运营效率与成本控制层面
需进一步优化成本收入结构,通过智能客服、自动化流程等数字化工具降低运营成本,目标将成本收入比(CIR)控制在25%以下。建议重点发展轻资本业务,如财富管理与投资银行,利用“AI+专家”模式孵化高收益金融产品。组织架构上应保持敏捷性,推广微服务架构至全业务线,缩短产品迭代周期,例如将贷款审批时效压缩至1小时以内,并通过“蛋壳平台”持续收集员工与客户反馈,快速响应市场需求。
6.2.3风险管理与合规建设层面
需升级智能风控体系,强化大数据征信与机器学习模型的应用,实时监测贷后行为异动,目标将不良贷款率(NPL)稳定在1%以下。建议开发动态压力测试模型,针对房地产等高风险行业预判风险传导路径。在资本配置上,应优先支持高ROA的科技金融业务,并利用智能存款定价系统动态调整负债结构,降低利率市场化对净息差的冲击。同时,需加强数据安全与隐私计算技术的应用,确保符合《数据安全法》等监管要求。
6.2.4生态协同与政策响应层面
建议深化与科技巨头(如腾讯、华为)的合作,联合开发量子计算加密、绿色金融等前沿技术。在“双碳”目标下,可推出碳账户与绿色信贷联动产品,拓展场景金融覆盖范围。政策层面需建立专项研究团队,预判监管导向并提前布局合规技术。经济扩张期可加大科技信贷投放,收缩期则聚焦存量客户价值挖掘,平衡技术投入与盈利稳定性。此外,需关注宏观经济波动的影响,例如M2增速换挡可能带来的流动性管理挑战。
致谢
参考文献
[1]李茂林, 王子路, 何光辉, 王宇琨. 银行业金融科技创新、结构性普惠效应与创业活力[J]. 管理世界, 2024, 40 (06): 195-224.[2]王松鑫. 金融科技发展对商业银行盈利的影响研究[D]. 哈尔滨商业大学, 2024.[3]林曦, 王仁曾. 金融科技与银行脆弱性——基于外源性金融科技和内部数字化转型视角[J]. 江西财经大学学报, 2024, (03): 23-36.[4]郭娜, 张骏. 金融科技应用与银行主动风险承担行为——基于银行信贷供给的理论和实证研究[J]. 经济学家, 2024, (05): 56-66.[5]李冠东. 金融科技对商业银行信用风险影响研究[D]. 上海师范大学, 2023.[6]万璇. 商业银行发展金融科技策略研究[D]. 山西财经大学, 2023.[7]贾玲俊. 金融科技趋势下商业银行数字化转型发展研究[J]. 山东纺织经济, 2023, 40 (09): 31-34.[8]文学舟, 钱金悦, 汪晶晶. 金融科技对小微企业信贷效率的影响——基于银行竞争度和业务管理水平的中介效应[J]. 新金融, 2023, (09): 37-44.[9]张雪春, 苏乃芳. 我国银行支持科创企业发展的现状、问题和建议[J]. 武汉金融, 2023, (09): 3-8.[10]闫成宇, 方永胜. 金融科技、银行竞争与中小企业融资约束——基于长三角城市群的实证分析[J]. 黄山学院学报, 2023, 25 (04): 54-60.[11]李雪蕾. 金融科技背景下招商银行中间业务转型案例分析[D]. 河北金融学院, 2023.[12]勾文婧. 金融科技、银行竞争与我国中小企业融资约束研究[D]. 四川大学, 2023.[13]王傲群. 招商银行零售数字化转型效果分析[D]. 东北农业大学, 2023.[14]王姿郁. 金融科技对商业银行资产负债结构的影响研究[D]. 广西民族大学, 2023.[15]林立超. 招商银行W分行零售业务数字化转型存在的问题与对策研究[D]. 浙江工商大学, 2023.[16]康靖. 金融网络关联度对商业银行经营风险的影响研究[D]. 西华大学, 2023.[17]艾威. 金融科技对商业银行不良贷款风险防范的影响研究[D]. 湘潭大学, 2023.[18]张县委. 金融科技对商业银行零售业务盈利能力影响研究[D]. 中央财经大学, 2023.[19]董晓林, 吴之伟, 陈秋月. 金融科技发展对商业银行风险防控的影响——基于中国176家商业银行的实证分析[J]. 江苏社会科学, 2023, (01): 84-94+242-243.[20]唐识瀚. 金融科技对商业银行风险承担的影响研究[D]. 华东政法大学, 2022.[21]李菲. 金融科技赋能商业银行零售业务发展研究[D]. 浙江工商大学, 2022.