力扣题解系列:367. 有效的完全平方数

题目:367. 有效的完全平方数

题目描述:

给定一个正整数 num,编写一个函数,如果 num 是一个完全平方数,则返回 True,否则返回 False

示例:

输入:16
输出:True
输入:14
输出:False

思路:

方法一:“暴力”
直接从1开始遍历,直到满足条件为止。(一般人应该不会这么干吧)时间复杂度是O(n),经检验超时,代码就不放了。
方法二:“任意一个平方数可以表示成这样的奇数序列和:1+3+5+7+…(2N−1)=N ^2"
代码:

class Solution:
    def isPerfectSquare(self, num: int) -> bool:
        i = 1
        while num > 0:
            num -= i
            i += 2
        return num == 0

方法二的时间复杂度是O(n^0.5),实测可以通过。
方法三:二分法(相当于对方法一的优化)
代码:

class Solution:
    def isPerfectSquare(self, num: int) -> bool:
        if num < 2:
            return True
        left, right = 1, num
        while left < right:
            x = (right + left)//2
            if x * x == num:
                return True
            elif x * x > num:
                right = x
            else:
                left = x + 1
        return False

方法四:牛顿迭代法(数值分析中学过,可惜学过不会灵活使用)
牛顿迭代法是通过数值逼近,来求方程近似解的一种方法。思路感觉我讲不明白,就不写了。可以参考链接。
https://leetcode-cn.com/problems/valid-perfect-square/solution/ceng-ceng-di-jin-zhu-bu-zui-you-de-si-chong-jie-fa/

代码:

class Solution:
    def isPerfectSquare(self, num: int) -> bool:
        if num < 2:
            return True
        
        left, right = 2, num // 2
        
        while left <= right:
            x = left + (right - left) // 2
            guess_squared = x * x
            if guess_squared == num:
                return True
            if guess_squared > num:
                right = x - 1
            else:
                left = x + 1
        
        return False

作者:LeetCode
链接:https://leetcode-cn.com/problems/valid-perfect-square/solution/you-xiao-de-wan-quan-ping-fang-shu-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值