- 博客(1)
- 收藏
- 关注
翻译 机器学习中分类算法常见评估指标
1.准确率(Accuracy) 预测正确的样本数量占总量的百分比,具体的公式如下: Accuracy = 准确率有一个缺点,就是数据的样本不均衡,这个指标是不能评价模型的性能优劣的。 假如一个测试集有正样本99个,负样本1个。模型把所有的样本都预测为正样本,那么模型的Accuracy为99%,看评价指标,模型的效果很好,但实际上模型没有任何预测能力。 2.精准率(Precision) 又称为查准率,是针对预测结果而言的一个评价指标。在模型预测为正样本的结果中,真正是正样本所占的百分比,具体公式.
2022-02-23 20:51:36 782
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人