![](https://i-blog.csdnimg.cn/columns/default/20201014180756757.png?x-oss-process=image/resize,m_fixed,h_224,w_224)
CNN模型介绍
文章平均质量分 82
记录应用于图像分类、目标检测、人脸识别、姿势检测等领域的CNN模型
HelloWorldQAQ。
@
展开
-
CNN基础网络(二)
CNN基础网络介绍ResNetBatchNormalization全连接层批量归一化卷积层批量归一化训练和推理时的批量归一化ResNet介绍ResNet之前,首先介绍一下批量归一化(BatchNormalization)。BatchNormalization通常来说,输入数据标准化预处理对于浅层模型就足够有效了,随着模型训练的进行,当每层的参数更新时,靠近输出层的输出比较难出现剧烈变化。但是对深层神经网络来说,即使输入数据已做了标准化,训练中模型参数的更新依然很容易造成靠近输出层输出的剧烈变化。这种原创 2021-09-09 23:30:38 · 662 阅读 · 0 评论 -
CNN基础网络(一)
CNN基础网络介绍LenetCNN(卷积神经网络)借助卷积层保留了输入形状,使图像在宽和高两个方向上的相关性均可能被有效识别,另一方面卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免了参数尺寸过大.有效集解决了临近像素点的特征提取和模型参数过大的问题.卷积神经网络就是包含卷积层的网络,这个名字最早来源于Lenet论文的第一作者Yann LeCun.Lenet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的成果.LenetLenet模型分为卷积层块和全连接层块.卷原创 2021-09-06 19:28:52 · 774 阅读 · 0 评论 -
yolov3-tiny
目标检测简介针对一张图片,根据后续任务的需要,有三个主要层次。一是分类(Classification),即是将图像结构化为某一类别的信息,用事先确定好的类别或实例ID来描述图片,这一任务是最简单、最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务。其中ImageNet是最权威的评测集,每年的ILSVRC催生了大量的优秀深度网络结构,为其他任务提供了基础。在应用领域,人脸、场景的识别等,都可以归为分类任务。...原创 2020-11-26 00:02:37 · 9493 阅读 · 0 评论 -
轻量级人脸检测模型—Slim-320
文章目录1. 模型介绍2. 生成预选框3. 推理结果1. 模型介绍Github:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB一个轻量级人脸检测模型,提供了Slim-320(速度更快)和RFB-320(精度更高)两个版本,并提供Caffe推理脚本。在产品上部署Slim-320做人脸检测,腾讯TNN提供的人脸检测Demo同样使用的该模型。运行效果:2. 生成预选框模型采用4个分支做预测,每个分支的基础an原创 2021-02-04 23:35:08 · 983 阅读 · 0 评论 -
在Linux下部署Yolo-Fastest + TNN
Yolo-Fastest + TNN本文记录使用TNN推理Yolo-Fastest完整过程。Yolo-Fastest的Git地址:https://github.com/dog-qiuqiu/Yolo-FastestTNN的Git地址:https://github.com/Tencent/TNNTNN编译TNN提供了在Linux下一键编译的脚本build_linux.sh,编译完成后,build目录下会生成测试可执行文件test/TNNTest,可在Linux下直接运行。添加Mem DumpTN原创 2020-09-21 14:12:40 · 2038 阅读 · 5 评论