图解十大经典排序算法(Java)

在这里插入图片描述
比较排序:
冒泡、选择、插入、希尔、堆、归并、快排
非比较排序:
基数、计数、桶
稳定排序:
冒泡、插入、归并、基数、计数、桶
不稳定排序:
选择、希尔、堆、快排
分治思想:
归并、快排

冒泡排序

  1. 算法步骤:
    1)比较相邻的元素。如果第一个比第二个大,就交换他们两个。
    2)对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
    3)针对所有的元素重复以上的步骤,除了最后一个。
    4)持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
  2. 优化策略:设立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。
  3. 动图演示:
    在这里插入图片描述
  4. 适用场景:
    少量数据
  5. 代码实现:
public class BubbleSort {

    public int[] sort(int[] arr){
        for (int i = 1; i < arr.length; i++) {
            //标记,若为true,就表明此次循环没有进行交换,表明已经排好序,就跳出循环
            boolean flag = true;

            for (int j = 0; j < arr.length-i; j++) {
                if (arr[j] > arr[j+1]){
                    int tmp = arr[j];
                    arr[j] = arr[j+1];
                    arr[j+1] = tmp;
                    //交换了,就设为false
                    flag =false;
                }
            }
            if(flag) break;
        }
        return arr;
    }
}

选择排序

  1. 算法步骤:
    1)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
    2)再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
    3)重复第二步,直到所有元素均排序完毕。
  2. 动图演示
    在这里插入图片描述
  3. 适用场景:
    少量数据
  4. 代码实现:
public class SelectSort{
    public int[] sort(int[] arr){

        for (int i = 0; i < arr.length-1; i++) {
            int min = i;
            for (int j = i+1; j < arr.length; j++) {
                if (arr[j] < arr[min]){
                    //记录最小元素的下标
                    min = j;
                }
            }
            //将找到的最小值和i位置所在的值进行交换
            if (i != min){
                int tmp = arr[i];
                arr[i] = arr[min];
                arr[min] = tmp;
            }
        }
        return arr;
    }
}

插入排序

  1. 算法步骤:
    1)将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
    2)从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)
  2. 动图演示:
    在这里插入图片描述
  3. 适用场景:
    小规模、基本有序的时候十分有效。在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。
  4. 代码实现:
public class InsertSort{
    public int[] sort(int[] arr){
        //0为已排好序的,从1开始往有序序列里面插入
        for (int i = 1; i < arr.length; i++) {
            //要插入的数据
            int tmp = arr[i];
            //j是要插入的数据位置,它和j前已排好序的序列j-1 ~ 0比较,
            int j = i;
            while (j>0 && tmp < arr[j-1]){
                //找到就将数据往后移一位
                arr[j] = arr[j-1];
                j--;
            }
            //将数据插入
            if (j != i){
                arr[j] = tmp;
            }
        }
        return arr;
    }
}

希尔排序

  1. 算法步骤:
    1)选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
    2)按增量序列个数 k,对序列进行 k 趟排序;
    3)每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度
  2. 动图演示:
    在这里插入图片描述
  3. 适用场景:
    对插入排序的一种改进,中等大小规模表现良好,对规模非常大的数据排序不是最优选择。
  4. 代码实现
public class ShellSort{
    public int[] sort(int[] arr){
        //间隔计算
        int gap = 1;
        while(gap <= arr.length / 3){
            gap = gap * 3 + 1;
        }
        while (gap > 0){
        //相当于间隔为gap的插入排序,如果gap为1就和插入排序一样
            for (int i = gap; i < arr.length; i++) {
                int tmp = arr[i];
                int j = i;
                while (j >= gap && arr[j-gap] > tmp){
                    arr[j] = arr[j-gap];
                    j -= gap;
                }
                arr[j] = tmp;
            }
            //减小间隔
            gap = gap / 3;
        }
        return arr;
    }
}

堆排序

  1. 算法步骤
    1)创建初始堆;(大顶堆和小顶堆)
    2)把堆顶和堆尾互换;
    3)把堆的尺寸缩小 1,并重新调整堆;
    4)重复步骤 2,直到堆的尺寸为 1。
  2. 动图演示:在这里插入图片描述
  3. 适用场景:
    数据量大,适用面较广,可以适用比快排更大量的数,也适用于多核并行处理。堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。
  4. 代码实现:
public class HeapSort{

    public int[] sort(int[] arr){
        int len = arr.length;
        //先建大顶堆,用堆调整的方法建立
        buildMaxHeap(arr, len);

        for (int i = len -1 ; i > 0; i--) {
            //交换堆顶和堆尾
            swap(arr, 0 ,i);
            len --; //堆大小减1
            //调整堆
            adjustHeap(arr, 0, len);
        }
        return arr;
    }
    //建大顶堆
    private void buildMaxHeap(int[] arr, int len){
        for (int i = len/2; i >= 0 ; i--) {
            adjustHeap(arr, i, len);
        }
    }
    //调整堆
    private void adjustHeap(int[] arr, int index, int len){
        int left = 2 * index + 1;   //左子节点索引
        int right =  left + 1;  //右子节点索引
        int largest = index;        //最大节点索引,默认值是当前节点(父节点)
        //判断左子节点比父节点的大小,如果有节点,肯定必有左子节点
        if (left < len && arr[left] > arr[largest]) {
            largest=left;
        }
        //先判断是否有右子节点,再判断左右节点,哪个较大。
        if (right < len && arr[right] > arr[largest]){
            largest = right;
        }
        //当前位置的索引不是最大索引就交换,然后再重新调整,如果相等就不动。
        if (largest != index){
            swap(arr, index, largest);
            adjustHeap(arr, largest, len);
        }
    }
    //交换数据
    private void swap(int[] arr, int i, int j){
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
}

归并排序

  1. 算法步骤:
    1)申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
    2)设定两个指针,最初位置分别为两个已经排序序列的起始位置;
    3)比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
    4)重复步骤 3 直到某一指针达到序列尾;
    5)将另一序列剩下的所有元素直接复制到合并序列尾
  2. 动图演示:
    在这里插入图片描述
  3. 适用场景:
    数据量大,且要求稳定的时候,可以考虑归并排序。
  4. 代码实现:
    这里运用了Arrays.copyOfRange(T[ ] original,int from,int to)方法,将一个原始的数组original,从下标from开始复制,复制到上标to,生成一个新的数组。注意这里包括下标from,不包括上标to。
public class MergeSort{

    public int[] sort(int[] arr){
        if (arr.length < 2){
            return arr;
        }
        int middle = arr.length / 2;
        //将当前数组分为两部分(分治)
        int[] left = Arrays.copyOfRange(arr, 0, middle);
        int[] right = Arrays.copyOfRange(arr, middle, arr.length);
        //递归
        return mergeSort(sort(left), sort(right));
    }

    private int[] mergeSort(int[] left, int[] right){
        //合并数组
        int[] result = new int[left.length + right.length];

        //判断左数组和右数组 中第一个数值的大小,将小的放入数组,并把小的那个数组的该项去掉
        int i = 0;
        while (left.length > 0 && right.length > 0){
            if (left[0] <= right[0]){
                result[i++] = left[0];
                left = Arrays.copyOfRange(left,1, left.length);
            }else{
                result[i++] = right[0];
                right = Arrays.copyOfRange(right,1, right.length);
            }
        }
        //左边数组有剩余,加入数组
        while (left.length > 0){
            result[i++] = left[0];
            left = Arrays.copyOfRange(left, 1, left.length);
        }
        //右边数组有剩余,加入数组
        while (right.length > 0){
            result[i++] = right[0];
            right = Arrays.copyOfRange(right, 1, right.length);
        }
        return result;
    }
}

快速排序

  1. 算法步骤:
    1)首先取数组的第一个元素作为基准元素pivot。
    2)重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
    3)递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

  2. 动图演示:
    在这里插入图片描述

  3. 适用场景:
    数据量大,快速排序是目前基于比较的排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;

  4. 代码实现:

public class QuickSort{
    public int[] sort(int[] arr){
        return quickSort(arr, 0, arr.length-1);
    }

    private int[] quickSort(int[] arr, int left, int right){
        if (left < right){
            int partition = partition(arr, left, right);
            //分治
            quickSort(arr, left, partition - 1);
            quickSort(arr, partition + 1, right);
        }
        return arr;
    }

    private int partition(int[] arr, int left, int right){
        int pivot = left;
        int index = pivot + 1;  //始终为第一个大于pivot值的位置
        for (int i = index; i <= right; i++) {
            if (arr[i] < arr[pivot]){
                swap(arr, i, index);
                index++;
            }
        }
        //将pivot位置的值和最后一个小于pivot的值交换
        swap(arr, pivot, index-1);
        //交换后 index-1 就是 pivot 的位置
        return index-1;
    }

    private void swap(int[] arr, int i, int j){
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
}

计数排序

  1. 算法步骤:
    1)根据待排序集合中最大元素和最小元素的差值范围,申请额外空间;
    2)遍历待排序集合,将每一个元素出现的次数记录到元素值对应的额外空间内;
    3)对额外空间内数据进行计算,得出每一个元素的正确位置;
    4)将待排序集合每一个元素移动到计算得出的正确位置上。
  2. 动图演示:
    在这里插入图片描述
  3. 适用场景:
    每个桶只存储单一键值;它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。当然这是一种牺牲空间换取时间的做法。
  4. 代码实现:
public class CountingSort{

    public int[] sort(int[] arr){
        int maxValue = getMaxValue(arr);
        return countingSort(arr, maxValue);
    }

    private int[] countingSort(int[] arr, int maxValue){
        int bucketLen = maxValue + 1;
        int[] bucket = new int[bucketLen];

        //按照数组中的值(对应桶中的key),将桶中对应值的加1
        // 一个为1,两个就为2,...,依次增加,数组中value相同的情况
        for (int value : arr){
            bucket[value]++;
        }

        int sortedIndex = 0;
        for (int i = 0; i < bucketLen; i++) {
            //依次把桶中有数值的,将key取出来
            while (bucket[i] > 0){
                arr[sortedIndex++] = i;
                //可能有相同的值
                bucket[i]--;
            }
        }
        return arr;
    }

    //取最大值,确定桶的范围
    private int getMaxValue(int[] arr){
        int maxValue = arr[0];
        for(int value : arr){
            if (maxValue < value){
                maxValue = value;
            }
        }
        return maxValue;
    }

}

桶排序

  1. 算法步骤:
    1)首先规定好桶的数量
    2)其次计算好每个桶的数据范围 (max-min+1)/bucketCount
    3)把数据放在对应的桶里,桶内是排好序的
    4)遍历每个桶,得到最后排好序的序列
  2. 动图演示:
    在这里插入图片描述
  3. 适用场景:
    数据量大,求中位数。每个桶存储一定范围的数值,桶排序是计数排序的升级版。
  4. 代码实现:
public class BucketSort{

    public int[] sort(int[] arr){
        //7为桶数,自行设置
        return bucketSort(arr,7);
    }

    private int[] bucketSort(int[] arr, int bucketLen){
        if (arr.length == 0){
            return arr;
        }
        //求数组的最大值和最小值
        int minValue = arr[0];
        int maxValue = arr[0];
        for (int value: arr) {
            if (value < minValue){
                minValue = value;
            }
            if (value > maxValue){
                maxValue = value;
            }
        }
        //每个桶的大小
        int bucketCount = (maxValue - minValue) / bucketLen + 1;
        int[][] buckets = new int[bucketCount][0];

        //利用映射函数将数据分配到各个桶中
        for (int i = 0; i < arr.length; i++) {
            int index = (arr[i] - minValue) / bucketLen;
            //扩容桶,并添加数据
            buckets[index] = arrAppend(buckets[index], arr[i]);
        }

        int arrIndex = 0;
        for (int[] bucket : buckets) {
            //取有数据的桶,进行排序
            if(bucket.length > 0) {
                //对每个桶进行排序,这里用的插入排序,数据量小用插入,数据量大用快速
                InsertSort insertSort = new InsertSort();
                bucket = insertSort.sort(bucket);
                for (int value : bucket) {
                    arr[arrIndex++] = value;
                }
            }

        }
        return arr;
    }

    //扩容保存数据
    private int[] arrAppend(int[] arr, int value){
        arr = Arrays.copyOf(arr, arr.length + 1);
        arr[arr.length - 1] = value; //新数组最后一位添加数据
        return arr;
    }
}

基数排序

  1. 算法步骤:
    1)将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。
    2)从最低位开始,依次进行一次排序。
    3)这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
    基数排序的方式可以采用 LSD(Least significant digital)或 MSD(Most significant digital),LSD 的排序方式由键值的最右边开始,而 MSD 则相反,由键值的最左边开始。
  2. 动图演示:
    在这里插入图片描述
  3. 适用场景:
    基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。
  4. 代码实现:
public class RadixSort{

    public int[] sort(int[] arr) {
        int maxDigit = getMaxDigit(arr);
        return radixSort(arr, maxDigit);
    }

    //获取最高位数
    private int getMaxDigit(int[] arr) {
        int maxValue = getMaxValue(arr);
        return getNumLenght(maxValue);
    }

    //获取最大值
    private int getMaxValue(int[] arr) {
        int maxValue = arr[0];
        for (int value : arr) {
            if (maxValue < value) {
                maxValue = value;
            }
        }
        return maxValue;
    }
    //获取最高位,个位为1,十位为2,百位为3,...
    private int getNumLenght(long num) {
        if (num == 0) {
            return 1;
        }
        int lenght = 0;
        for (long temp = num; temp != 0; temp /= 10) {
            lenght++;
        }
        return lenght;
    }

    private int[] radixSort(int[] arr, int maxDigit) {
        int mod = 10;
        int dev = 1;

        for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
            // 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)
            int[][] buckets = new int[mod * 2][0];

            for (int j = 0; j < arr.length; j++) {
                //+mod 正好把正数和负数区分出来,[0-9]对应负数,[10-19]对应正数
                int index = ((arr[j] % mod) / dev) + mod;
                buckets[index] = arrayAppend(buckets[index], arr[j]);
            }
            //按照该位的顺序,把元素都放入到数组中。
            int pos = 0;
            for (int[] bucket : buckets) {
                for (int value : bucket) {
                    arr[pos++] = value;
                }
            }
        }
        return arr;
    }

    //扩容保存数据
    private int[] arrayAppend(int[] arr, int value) {
        arr = Arrays.copyOf(arr, arr.length + 1);
        arr[arr.length - 1] = value;  //新数组最后一位添加数据
        return arr;
    }
}

代码下载连接:本文的可运行代码
参考连接:
https://www.toutiao.com/i6704815171367338508/
https://www.jianshu.com/u/47a4e21999fc

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TriumPhSK

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值