一、Elasticsearch概述
1.1 Elasticsearch 是什么
The Elastic Stack, 包括 Elasticsearch、Kibana、Beats 和 Logstash(也称为 ELK Stack)。
能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索、分析和可视化。
Elaticsearch,简称为ES, ES是一个开源的高扩展的分布式全文搜索引擎,是整个Elastic Stack技术栈的核心。
它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。
1.2 全文搜素引擎
Google,百度类的网站搜索,它们都是根据网页中的关键字生成索引,我们在搜索的时候输入关键字,它们会将该关键字即索引匹配到的所有网页返回;
还有常见的项目中应用日志的搜索等等。对于这些非结构化的数据文本,关系型数据库搜索不是能很好的支持。
一般传统数据库,全文检索都实现的很鸡肋,因为一般也没人用数据库存文本字段。进行全文检索需要扫描整个表,如果数据量大的话即使对SQL的语法优化,也收效甚微。
建立了索引,但是维护起来也很麻烦,对于 insert 和 update 操作都会重新构建索引。
基于以上原因可以分析得出,在一些生产环境中,使用常规的搜索方式,性能是非常差的:
1. 搜索的数据对象是大量的非结构化的文本数据。
2. 文件记录量达到数十万或数百万个甚至更多。
3. 支持大量基于交互式文本的查询。
4. 需求非常灵活的全文搜索查询。
5. 对高度相关的搜索结果有特殊需求,但是没有可用的关系数据库可以满足。
6. 对不同记录类型、非文本数据操作或安全事务处理的需求相对较少的情况。
为了解决结构化数据搜索和非结构化数据搜索性能问题,我们就需要专业,健壮,强大的全文搜索引擎。
这里说到的全文搜索引擎指的是目前广泛应用的主流搜索引擎。它的工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,
指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。
这个过程类似于通过字典中的检索字表查字的过程。
1.3 Elasticsearch And Solr
Lucene是Apache软件基金会Jakarta项目组的一个子项目,提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。
在Java开发环境里Lucene是一个成熟的免费开源工具。就其本身而言,Lucene是当前以及最近几年最受欢迎的免费Java信息检索程序库。
但Lucene只是一个提供全文搜索功能类库的核心工具包,而真正使用它还需要一个完善的服务框架搭建起来进行应用。
目前市面上流行的搜索引擎软件,主流的就两款:Elasticsearch和Solr,
这两款都是基于Lucene搭建的,可以独立部署启动的搜索引擎服务软件。
由于内核相同,所以两者除了服务器安装、部署、管理、集群以外,对于数据的操作 修改、添加、保存、查询等等都十分类似。
在使用过程中,一般都会将Elasticsearch和Solr这两个软件对比,然后进行选型。这两个搜索引擎都是流行的,先进的的开源搜索引擎。
它们都是围绕核心底层搜索库 - Lucene构建的 - 但它们又是不同的。
像所有东西一样,每个都有其优点和缺点:
1.4 Elasticsearch Or Solr
Elasticsearch和Solr都是 开源搜索引擎,那么我们在使用时该如何选择呢
1. Google 搜索趋势结果表明,与 Solr 相比, Elasticsearch 具有很大的吸引力,但这并不意味着 Apache Solr 已经死亡。
虽然有些人可能不这么认为,但 Solr 仍然是最受欢迎的搜索引擎之一,拥有强大的社区和开源支持。
2. 与 Solr 相比, Elasticsearch 易于安装且非常轻巧。此外,你可以在几分钟内安装并运行Elasticsearch 。
但是,如果 Elasticsearch 管理不当,这种易于部署和使用可能会成为一个问题。
基于 JSON 的配置很简单,但如果要为文件中的每个配置指定注释,那么它不适合您。
总的来说,如果你的应用使用 的是 JSON ,那么 Elasticsearch 是一个更好的选择。否则,请使用 Solr ,因为它的 schema.xml 和 solrconfig.xml 都有很好的文档记录。
3. Solr 拥有更大,更成熟的用户,开发者和贡献者社区。 ES 虽拥有的规模较小但活跃的用户社区以及不断增长的贡献者社区。
Solr贡献者和提交者来自许多不同的组织,而 Elasticsearch 提交者来自单个公司。Solr 更成熟,但 ES 增长迅速,更稳定。
4. Solr 是一个非常有据可查的产品,具有清晰的示例和 API 用例场景。 Elasticsearch 的文档组织良好,但它缺乏好的示例和清晰的配置说明。
那么,到底是Solr 还是 Elasticsearch有时很难找到明确的答案。无论您选择Solr 还是 Elasticsearch ,首先需要了解正确的用例和未来需求。总结他们的每个属性。
5. 由于易于使用, Elasticsearch 在新开发者中更受欢迎。一个下载和一个命令就可以启动一切。
6. 如果除了搜索文本之外还需要它来处理分析查询, Elasticsearch 是更好的选择。
7. 如果需要分布式索引,则需要选择 Elasticsearch 。对于需要良好可伸缩性 以及 性能分布式环境 Elasticsearch 是更好的选择。
8. Elasticsearch 在开源日志管理用例中占据主导地位,许多组织在 Elasticsearch 中索引它们的日志以使其可搜索。
9. 如果 你 喜欢监控和指标,那么 请 使用 Elasticsearch ,因为相对于 Solr Elasticsearch 暴露了更多的关键指标。
1.5 Elasticsearch 应用案例
1. GitHub :2013 年初,抛弃了 Solr ,采取 Elasticsearch 来做 PB 级的搜索。 “GitHub 使用Elasticsearch 搜索 20TB 的数据,包括 13 亿文件和 1300 亿行代码 。
2. 维基百科:启动以 Elasticsearch 为基础的核心搜索架构。
3. SoundCloud :“SoundCloud 使用 Elasticsearch 为 1.8 亿用户提供即时而精准的音乐搜索服务 。
4. 百度:目前广泛使用 Elasticsearch 作为文本数据分析,采集百度所有服务器上的各类指标数据及用户自定义数据,通过对各种数据进行多维分析展示,
辅助定位分析实例异常或业务层面异常。目前覆盖百度内部 20 多个业务线(包括云分析、网盟、预测、文库、直达号、钱包、 风控等),单集群最大 100 台机器,
200 个 ES 节点,每天导入 30TB+数据。
5. 新浪:使用 Elasticsearch 分析处理 32 亿条实时日志。
6. 阿里:使用 Elasticsearch 构建日志采集和分析体系。
7. StackOverflow:解决 Bug 问题的网站,全英文,编程人员交流的网站。