PAT L1 048 矩阵A乘以B

该博客主要介绍了PAT编程题L1 048的解题思路,通过直接模拟实现两个二维矩阵的乘法。文章提到,如果矩阵的维度不匹配(即第一个矩阵的列数不等于第二个矩阵的行数),则无法进行乘法运算。内容中提供了简单的代码实现,遵循线性代数中的矩阵乘法规则。
摘要由CSDN通过智能技术生成

题目描述:

给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra行、Ca列,B有Rb行、Cb列,则只有Ca与Rb相等时,两个矩阵才能相乘。

输入格式:

输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。

输出格式:

若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出“Error: Ca != Rb”,其中Ca是A的列数,Rb是B的行数。

输入样例1:
2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8
输出样例1:
2 4
20 22 24 16
53 58 63 28
输入样例2:
3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72
输出样例2:
Error: 2 != 3

直接模拟就好了,两个二维矩阵,也没有说如果不行的话会转置一下,所以输入的话如果
设第一个矩阵为m,n;
第二个矩阵为x,y;
如果n!=x说明就无法乘
然后后面怎么乘就按照线性代数课本来就好了

大概就是这样
代码如下:

#include<cstdio>
#include<cstdlib>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值