总时间限制: 1000ms 内存限制: 65536kB
描述
最近越来越多的人都投身股市,阿福也有点心动了。谨记着“股市有风险,入市需谨慎”,阿福决定先来研究一下简化版的股票买卖问题。
假设阿福已经准确预测出了某只股票在未来 N 天的价格,他希望买卖两次,使得获得的利润最高。为了计算简单起见,利润的计算方式为卖出的价格减去买入的价格。
同一天可以进行多次买卖。但是在第一次买入之后,必须要先卖出,然后才可以第二次买入。
现在,阿福想知道他最多可以获得多少利润。
输入
输入的第一行是一个整数 T (T <= 50) ,表示一共有 T 组数据。
接下来的每组数据,第一行是一个整数 N (1 <= N <= 100, 000) ,表示一共有 N 天。第二行是 N 个被空格分开的整数,表示每天该股票的价格。该股票每天的价格的绝对值均不会超过 1,000,000 。
输出
对于每组数据,输出一行。该行包含一个整数,表示阿福能够获得的最大的利润。
样例输入
3
7
5 14 -2 4 9 3 17
6
6 8 7 4 1 -2
4
18 9 5 2
样例输出
28
2
0
提示
对于第一组样例,阿福可以第 1 次在第 1 天买入(价格为 5 ),然后在第 2 天卖出(价格为 14 )。第 2 次在第 3 天买入(价格为 -2 ),然后在第 7 天卖出(价格为 17 )。一共获得的利润是 (14 - 5) + (17 - (-2)) = 28
对于第二组样例,阿福可以第 1 次在第 1 天买入(价格为 6 ),然后在第 2 天卖出(价格为 8 )。第 2 次仍然在第 2 天买入,然后在第 2 天卖出。一共获得的利润是 8 - 6 = 2
对于第三组样例,由于价格一直在下跌,阿福可以随便选择一天买入之后迅速卖出。获得的最大利润为 0
dp太菜了,菜的抠脚没有想到
既然我们要获取两次的最大利益,且两次不能有相交,那么设某一天为x,我们先求出前x天的最大利益,在求出x天以后的最大利益,两者相加就是当前情况的最大利益,然后遍历一遍x的范围,就可以找到所有情况中的利益最大值.
(侵删)
原代码主人:戳我
#include<iostream>
#include<string.h>
#include<string>
#include<algorithm>
using namespace std;
const int MAX_NUM = 100005;
int price[MAX_NUM];
int pre[MAX_NUM];
int post[MAX_NUM];
int max_profit;
//想法很强 没能想到
int main()
{
int num;
scanf("%d",&num);
while (num--)
{
int days;
//memset(price, 0, sizeof(price));
memset(pre, 0, sizeof(pre));
memset(post, 0, sizeof(post));
scanf("%d",&days);
for (int i = 0; i < days; i++)
{
scanf("%d",&price[i]);
}
//前i天中价格最小的一天买,第i天卖获取的最大利润
//初始化,计算pre
pre[0] = 0;
int min_price = price[0];
for (int i = 1; i<days; i++)
{
pre[i] = max(pre[i - 1], price[i] - min_price);
if (min_price>price[i])
min_price = price[i];
}
//第j天买,之后寻找卖的一天,获取最大利润
//初始化,并且计算post
post[days - 1] = 0;//初始化为0
int max_price = price[days-1];
for (int j = days - 2; j >= 0; j--)
{
post[j] = max(post[j + 1], max_price - price[j]);
if (max_price < price[j])
max_price = price[j];
}
//进行遍历,输出最大值
max_profit = pre[0] + post[0];
for (int k = 0; k < days; k++)
{
max_profit = max(pre[k] + post[k],max_profit);
}
cout << max_profit << endl;
}
return 0;
}