题目描述
给一n \times nn×n的字母方阵,内可能蕴含多个“yizhong
”单词。单词在方阵中是沿着同一方向连续摆放的。摆放可沿着 88 个方向的任一方向,同一单词摆放时不再改变方向,单词与单词之间可以交叉,因此有可能共用字母。输出时,将不是单词的字母用*
代替,以突出显示单词。例如:
输入:
8 输出:
qyizhong *yizhong
gydthkjy gy******
nwidghji n*i*****
orbzsfgz o**z****
hhgrhwth h***h***
zzzzzozo z****o**
iwdfrgng i*****n*
yyyygggg y******g
输入格式
第一行输入一个数nn。(7 \le n \le 1007≤n≤100)。
第二行开始输入n \times nn×n的字母矩阵。
输出格式
突出显示单词的n \times nn×n矩阵。
输入输出样例
输入 #1复制
7 aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa
输出 #1复制
******* ******* ******* ******* ******* ******* *******
输入 #2复制
8 qyizhong gydthkjy nwidghji orbzsfgz hhgrhwth zzzzzozo iwdfrgng yyyygggg
输出 #2复制
*yizhong gy****** n*i***** o**z**** h***h*** z****o** i*****n* y******g
记录一下借鉴来的AC代码 方便我这个小菜鸟日后回看233
思路主要是先从这个单词方阵中找到y 然后对y进行上下左右斜 8个方位的检索,一直检索到如果最后一个字符还是符合题目要求的字符的话 会逐个返回上一层然后给bool数组赋值true(利用了递归的特性 先走到yizhong字符串的最后一位 能走到则开始一层一层返回上一层 在返回上一层前并给bool数组赋值true)
代码如下
#include<bits/stdc++.h>
using namespace std;
int n,u[8]={1,1,0,-1,-1,-1,0,1},v[8]={0,1,1,1,0,-1,-1,-1};
bool ma[101][101];
char le[11];
char chess[101][101];
bool dfs(int x,int y,char ch,int direction){
if(ch=='g'){
ma[x][y]=true;
return true;
}
int xx=x+u[direction],yy=y+v[direction];
if(xx>=1&&yy>=1&&xx<=n&&yy<=n&&chess[xx][yy]==le[ch])
if(dfs(xx,yy,le[ch],direction)){
ma[xx][yy]=true;//如上解释 当if为真的时候赋值并返回上一层 如上面解释
return true;
}
return false;
}
int main(){
le['y']='i';//string 数组应该也可以
le['i']='z';
le['z']='h';
le['h']='o';
le['o']='n';
le['n']='g';
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>chess[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(chess[i][j]=='y')
for(int k=0;k<8;k++)
if(dfs(i,j,'y',k))
ma[i][j]=true;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
if(ma[i][j])
cout<<chess[i][j];
else
cout<<"*";
cout<<endl;
}
}