HDU 4507(数位DP)

http://acm.hdu.edu.cn/showproblem.php?pid=4507

比如 个位为0,1,2,3,5,8,9,十位为1,那么10,11,12,13,15,18,19都是符合要求的;

假设ans为2位的情况,temp为一位的情况。

结构体中cnt表示的是符合该种情况数的个数,sum表示符合该种情况数的和,ssum表示符合该种情况数的平方和。

在dfs至个位的情况时(i),temp.cnt=1,temp.sum=i,temp.ssum=i*i;

然后,返回第二位,ans.cnt+=temp.cnt;ans.sum+=temp.cnt*byte[2]+temp.sum(相当于10*7+0+1+2+3....)。

然后考虑这些数的平方和:考虑完全平方公式,所以对于10,11,12,13,15...19的平方和可以写成(7*10+(0+1+2+3..9))的平方。注意取模。详细见代码。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll Mod=1e9+7;
struct node{
    ll cnt,sum,ssum;
    node(){cnt=-1;sum=0;ssum=0;};
    node(ll c,ll s,ll ss)
    {
        cnt=c;sum=s;ssum=ss;
    }
}dp[20][10][10];
int a[20];
ll byte[20];
node dfs(int pos,int sum,int mod,bool limit)
{
    if(pos==0) return sum&&mod?node(1,0,0):node(0,0,0);
    if(!limit&&dp[pos][sum][mod].cnt!=-1) return dp[pos][sum][mod];
    int up=limit?a[pos]:9;
    node ans;
    ans.cnt=0;
    for(int i=0;i<=up;i++)
    {
        if(i==7) continue;
        node temp=dfs(pos-1,(sum+i)%7,(mod*10+i)%7,limit&&i==up);
        ans.cnt=(ans.cnt+temp.cnt)%Mod;
        ll t=i*byte[pos]%Mod*(temp.cnt%Mod)%Mod;
        ans.sum=(ans.sum+(t+temp.sum)%Mod)%Mod;
        ll tt=i*byte[pos]%Mod;

        ans.ssum=(ans.ssum+(temp.ssum+tt*tt%Mod*temp.cnt%Mod+2*tt%Mod*temp.sum%Mod)%Mod)%Mod;
    }
    if(!limit) dp[pos][sum][mod]=ans;
    return ans;
}
ll slove(ll n)
{
    int tot=0;
    while(n)
    {
        a[++tot]=n%10;
        n/=10;
    }
    return dfs(tot,0,0,true).ssum;
}
void init()
{
    byte[1]=1;
    for(int i=2;i<20;i++)
        byte[i]=byte[i-1]*10%Mod;
}
int main()
{
    ios::sync_with_stdio(false);
    init();
    int t;
    cin>>t;
    while(t--)
    {
        ll a,b;
        cin>>a>>b;
        cout<<(slove(b)-slove(a-1)+Mod)%Mod<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值