Pytorch
文章平均质量分 63
乄洛尘
2024年6月份博士毕业,现在已经在工作了,做计算机视觉、机器视觉的工作(*^▽^*)~
如有问题请留言或私信,笔者看到后会第一时间回复呦~
论文阅读笔记系列保持不定期更新,稳定更新的话估计得等我成为自由职业者吧~
展开
-
Pytorhc中的Torch.tensor.masked_fill_(mask, value)函数拓展
照例,吐槽一下之前CSDN博客中关于tensor.masked_fill_ (mask,value)函数,如你所见,大部分的博客都是强调 mask 的 shape 必须和tensor一样,但是咋就没有同学考虑广播机制的存在捏?原创 2022-04-29 16:14:05 · 1440 阅读 · 2 评论 -
关于 FLOPS、FLOPs、参数量的相关计算
最近找到一些计算FLOPs的文章,奈何全是水文,讲都讲不清楚,完完全全的究极缝合怪。因此,这里准备彻底搞懂。原创 2022-03-30 19:07:40 · 15274 阅读 · 27 评论 -
Pytoch tensor.max(x,y) 两个tensor的比较
Pytoch tensor.max(x,y) 两个tensor的比较一、例子二、输出结果三、结论写在前面大部分博客写的基本上都是关于 torch.max(input,dim)这种基本操作,殊不知torch.max还有一种比较两个tensor大小的操作。一、例子import torchx = torch.randn([4, 1, 2])y = torch.randn([2, 2])print("x",x,x.shape,"\n")print("y",y,y.shape,"\n")z =原创 2021-07-04 18:45:35 · 4759 阅读 · 4 评论 -
tensor里面的列表(非普通索引切片)切片操作
tensor里面的切片(非普通索引切片)操作1、介绍2、实验结果3、结论1、介绍在某个程序里面发现一个tensor新奇的切片操作:利用list进行切片,对,你没有看错,就是列表切片!import torchoriginal = torch.randn(2,25800) # 创建一个二维tensorprint("original.shape", original.shape) # torch.Size([2, 25800])index_1 = torch.tensor([[0],原创 2021-06-17 16:09:44 · 1033 阅读 · 7 评论 -
解决torch.save(outputs, “xxx.pth“)时报运行内存不足的问题:kill - 9
解决torch.save(outputs, "xxx.pth")时报运行内存不足的错误:kill - 9一、 问题描述二、原因分析三、解决办法四、结论附注:读取 **XX.pth、.th、npy、npz**等文件的方式一、 问题描述在利用Faster_RCNN批量提取proposal特征时,报运行内存不足。二、原因分析一般该问题在批量提取数据集特征时特别容易出现,原因例如采用了下列这种结构:results_dict = {}results_dict.update({img_id: result原创 2021-06-11 17:06:54 · 1546 阅读 · 0 评论 -
torchvision中给出的归一化方法transforms.Normalize()的形参理解与坑—拓展:反归一化
转载于:https://blog.csdn.net/qq_42079689/article/details/102574358参考:《动手学深度学习》(Pytorch版)作者在这里讲解了transforms.Normalize()的原理:transforms.Normalize( mean = (0.5,0.5,0.5), std = (0.5,0.5,0.5) )并不是指将张量的均值和标准差设为0.5,而是做这么一个运算:输入的每个channel做 ( [0, 1] - mean(0.5) )/ st原创 2020-06-13 16:21:33 · 4706 阅读 · 0 评论