Python学习笔记--模块

本文介绍了Python中的模块概念及使用方法,包括如何导入模块、模块名的定义规范以及Python解释器如何处理.py文件生成.pyc文件以提高程序启动速度。
1--模块是Python程序架构的一个核心概念
。--模块就好比是工具包,要想使用这个工具包中的工具,就需要导入import这个模块
。--每一个以拓展名py结尾的Python源代码文件都是一个模块
。--在模块中定义的全局变量、函数都是模块都能够提供给外界直接使用的工具
。--导入之后,就可以使用 模块名.变量/模块名.函数 的方式,使用这个模块定义的变量或者函数

2--模块名定义
。--模块名也是一个标识符
--标识符可以由字母、下划线和数字组成
--不能以数字开头
--不能与关键字重名


**注意:如果在个Python文件起名时,以数字开头是无法在Pycharm中通过导入这个模块的


3--Pyc文件(了解)
。--C是compiled编译过的意思
。--操作步骤
--浏览某程序目录会发现一个__pycache__的目录
--目录下会有一个XXX.cpython-35.pyc文件,cpython-35表示Python解释器的版本
--这个pyc文件是由Python解释器(编译过的.py文件)将模块的源码转换为字节码
-Python这样保存字节码是作为一种启动速度的优化

补充--字节码:

。--Python在解释源程序时是分两个步骤的
--首先处理源代码,变异生成一个二进制字节码
--再对字节码进行处理,才会生成CPU能够识别的机器码
。--有了模块的字节码文件之后,下一次运行程序时,如果在上次保存字节码之后没有修改过源代码,
Python将会加载.pyc文件并跳过编译这个步骤
。--当Python重编译时,他会自动检查源文件和字节码文件的时间戳
。--如果你又修改了源代码,下次程序运行时,字节码将自动重新创建

【源码免费下载链接】:https://renmaiwang.cn/s/mgvj5 Ackley函数,作为优化算法测试领域的一个重要工具,它的设计初衷是为了评估比较不同优化算法在处理复杂优化问题时的能力。这个函数具有多模态、非线性、非凸等特性,使得它成为检验全局搜索性能的理想选择。下面将详细探讨Ackley函数定义、特点以及其在优化算法测试中的应用。Ackley函数由Dennis B. Ackley于1972年提出,其数学表达式如下:\[ f(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_i^2}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi x_i)\right) + 20 + e \]其中,\( n \) 是输入向量的维度,\( x_i \) 是输入向量的第\( i \)个元素,\( e \)是自然对数的底数(约等于2.718)。函数的目标是找到使该函数值最小化的\( x \)值。注意,此函数在全局最小值为0的位置处有多个局部极小值,这些极小值通常分布在整个定义域内,增加了求解的难度。 Ackley函数的主要特点如下:1. **多模态**:函数中包含了多个局部最小值,这模拟了实际问题中可能出现的复杂地形。2. **非线性**:函数的形状依赖于输入变量的平方及余弦函数,这使得问题无法通过简单的线性操作解决。3. **非凸**:函数的等值线不是简单的圆形或椭圆形,而是呈现出复杂的曲面结构,进一步增加了优化的挑战。4. **全局最优解**:尽管存在多个局部最小值,但 Ackley 函数有一个全局最小值,即所有\( x_i = 0 \),函数值为0。在优化算法测试中,Ackley函数常被用来评估算法的全局搜索能力、收敛速度稳定性。优化算法的目标是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值