Silver Cow Party

本文详细解析了POJ-3268题目的解题思路,利用最短路算法求解牛群之间的往返时间,通过反向存边和两次Dijkstra算法实现高效求解。

题目链接POJ-3268

[kuangbin带你飞【专题六】 最短路][2] ## **题目描述**:

有编号为1-N的牛,它们之间存在一些单向的路径。给定一头牛的编号,其他牛要去拜访它并且拜访完之后要返回自己原来的位置,求这些牛中所花的最长的来回时间是多少。

思路

我们很容易求出从给定点出发,到其他顶点的最短路。那如何求出其他顶点到给定点的最短路呢? 我们可以反向存边,再来计算一次从给定顶点到其他顶点的最短路,两次求出的最短路求和,然后找出最大的那个数值,就是答案!

代码

#include <iostream>
#include <queue>
#include <cstring>
using namespace std;

#define MAX_N 1010
#define MAX_M 100010
#define INF 0x3f3f3f3f

int dist[MAX_N], vis[MAX_N], mat[MAX_N][MAX_N];

struct Min_Heap{
    int key, val;
    bool operator < (const Min_Heap &a) const
    {
        return a.val < val;
    }
    Min_Heap(int tmp_key, int tmp_val)
    {
        key = tmp_key;
        val = tmp_val;
    }
};

void init(int n)
{
    memset(vis, 0, sizeof(vis));
    for(int i = 1; i<=n; i++)
    {
        for(int j = 1; j<=n; j++)
            mat[i][j] = INF;
        dist[i] = INF;
    }
}

void Union(int x, int y, int val)
{
    if(val < mat[x][y])
        mat[x][y] = val;
}

void Dijkstra(int n, int v)
{
    priority_queue<Min_Heap> S;
    dist[v] = 0;
    S.push(Min_Heap(v, 0));
    while(!S.empty())
    {
        Min_Heap h = S.top();
        S.pop();
        int k = h.key, val = h.val;
        if(vis[k])
            continue;
        vis[k] = 1;
        for(int i = 1; i<=n; i++)
        {
            if(!vis[i] && val + mat[k][i] < dist[i])
            {
                dist[i] = val + mat[k][i];
                S.push(Min_Heap(i, dist[i]));
            }
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, m, v;
    int len[MAX_N];
    memset(len, 0, sizeof(len));
    cin >> n >> m >> v;
    init(n);
    for(int i = 1; i<=m; i++)
    {
        int x, y, val;
        cin >> x >> y >> val;
        Union(x, y, val);
    }
    Dijkstra(n, v);//计算每只回去时最少的时间
    for(int i = 1; i<=n; i++)
        len[i] += dist[i];
    for(int i = 1; i<=n; i++)
    {
        for(int j = 1; j<i; j++)
            swap(mat[i][j], mat[j][i]);
    }
    for(int i = 1; i<=n; i++)
        dist[i] = INF;
    memset(vis, 0, sizeof(vis));
    Dijkstra(n, v);//计算每只来时最少的时间
    for(int i = 1; i<=n; i++)
        len[i] += dist[i];
    int MAX = -INF;
    for(int i = 1; i<=n; i++)
        MAX = max(MAX, len[i]);
    cout << MAX;
    return 0;
}



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值