Pytorch 自定义神经网络训练自己的图片数据
利用pytorch来设计自定义的神经网络,准备自定义的数据集,训练分类自己的图片数据
本文利用pytorch训练一个自定义的分类器,来对自己的图片数据集进行分类。神经网络的自定义包括网络结构的设计,网络层次各个参数的设计,如激励函数,卷积层数量,卷积核等参数。数据集的自定义是指用户可以设计自己的待分类图像,并且按照自己的意愿将其进行分类。如果你完全熟悉并且完成了本文的操作,那么你将可以完全依靠自己来设计一个图像分类的任务。
开始
~~
首先是数据的准备
~~
数据是手写数据集合,我把他准备为一堆jpg格式的文件,放在一个文件夹里,如图:
这是数据集的根目录,两个文件夹分布是训练集和测试集,还有两个txt,分别是标签txt文本,命名为“train.txt”,test.txt。
下图是各个文件内容:
这是训练集的图片内容,测试集也是一样的。再看标签文本:
这是标签文本。数据集就准备完毕了,你可能会好奇为什么我用的是mnist数据集,这没有理由被叫做自定义数据集吧。我想声明的 是,这些数据集都是我们能接触到的jpg格式的图片,而不是ubtye这样的2进制数据集,我们知道网上下载的mnist数据集都是这种格式的,但是我们自己的数据都是jpg的。所以,如果你将图片换成阿猫阿狗,其实训练过程也是一模一样的。我详细向你展示一个图片和标签的内容: