Pytorch 自定义神经网络训练自己的图片数据

本文介绍了如何使用Pytorch设计自定义的卷积神经网络,准备自定义图片数据集,并进行图像分类。内容涵盖数据准备、网络结构设计、数据集导入和训练过程,展示了自定义神经网络在处理手写数字识别任务上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch 自定义神经网络训练自己的图片数据

利用pytorch来设计自定义的神经网络,准备自定义的数据集,训练分类自己的图片数据

本文利用pytorch训练一个自定义的分类器,来对自己的图片数据集进行分类。神经网络的自定义包括网络结构的设计,网络层次各个参数的设计,如激励函数,卷积层数量,卷积核等参数。数据集的自定义是指用户可以设计自己的待分类图像,并且按照自己的意愿将其进行分类。如果你完全熟悉并且完成了本文的操作,那么你将可以完全依靠自己来设计一个图像分类的任务。

开始

~~

首先是数据的准备

~~

数据是手写数据集合,我把他准备为一堆jpg格式的文件,放在一个文件夹里,如图:
在这里插入图片描述
这是数据集的根目录,两个文件夹分布是训练集和测试集,还有两个txt,分别是标签txt文本,命名为“train.txt”,test.txt。
下图是各个文件内容:
训练集的图片内容
这是训练集的图片内容,测试集也是一样的。再看标签文本:
在这里插入图片描述
这是标签文本。数据集就准备完毕了,你可能会好奇为什么我用的是mnist数据集,这没有理由被叫做自定义数据集吧。我想声明的 是,这些数据集都是我们能接触到的jpg格式的图片,而不是ubtye这样的2进制数据集,我们知道网上下载的mnist数据集都是这种格式的,但是我们自己的数据都是jpg的。所以,如果你将图片换成阿猫阿狗,其实训练过程也是一模一样的。我详细向你展示一个图片和标签的内容:

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

twbinn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值