CF547D Mike and Fish

本文针对洛谷CF547D题目提供了一种解决方案,通过将行列问题分开考虑并利用二分图染色的方法来解决点对之间的配对问题。该方法能够有效地避免奇环的出现,并通过简单的算法实现对剩余点的有效处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.luogu.com.cn/problem/CF547D

首先可以行列时等价的,可以分开考虑
对于同一行的点,可以先两两配对
对于同一列的点,也可以两两配对
剩下的点不管
可以发现连出来的一定一个二分图
因为对于每一个点,如果下一步走到同行的,那么再下一步只能往同列的走
这样显然不存在奇环
所以跑个二分图染色,剩下的点随便染就行了
code:

#include<bits/stdc++.h>
#define N 800005
using namespace std;
struct edge {
	int v, nxt;
} e[N << 1];
int p[N], eid;
void init() {
	memset(p, -1, sizeof p);
	eid = 0;
}
void insert(int u, int v) {
	e[eid].v = v;
	e[eid].nxt = p[u];
	p[u] = eid ++;
}
int n, col[N];
vector<int> a[N], b[N];
void dfs(int u, int o) {
	col[u] = o;
	for(int i = p[u]; i + 1; i = e[i].nxt) {
		int v = e[i].v;
		if(col[v]) continue;
		dfs(v, - o);
	}
}
int main() {
	init();
	scanf("%d", &n);
	for(int i = 1; i <= n; i ++) {
		int x, y;
		scanf("%d%d", &x, &y);
		a[x].push_back(i);
		b[y].push_back(i);
	}
	for(int i = 1; i <= 200000; i ++) {
		for(int j = 0; j < (int)a[i].size() - 1; j += 2) {
	//		printf("%d %d  \n", a[i].size(), j);
			int u = a[i][j], v = a[i][j + 1];
			insert(u, v), insert(v, u);
		}
		for(int j = 0; j < (int)b[i].size() - 1; j += 2) {
		int u = b[i][j], v = b[i][j + 1];
			insert(u, v), insert(v, u);
		}
	}
	for(int i = 1; i <= n; i ++) if(!col[i]) dfs(i, 1);
	for(int i = 1; i <= n; i ++) 
		if(col[i] == 1) printf("r");
		else printf("b");
	return 0;
}

要学会行列分开考虑,出现偶数,成对等可以往二分图那里想

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值