https://www.luogu.com.cn/problem/CF547D
首先可以行列时等价的,可以分开考虑
对于同一行的点,可以先两两配对
对于同一列的点,也可以两两配对
剩下的点不管
可以发现连出来的一定一个二分图
因为对于每一个点,如果下一步走到同行的,那么再下一步只能往同列的走
这样显然不存在奇环
所以跑个二分图染色,剩下的点随便染就行了
code:
#include<bits/stdc++.h>
#define N 800005
using namespace std;
struct edge {
int v, nxt;
} e[N << 1];
int p[N], eid;
void init() {
memset(p, -1, sizeof p);
eid = 0;
}
void insert(int u, int v) {
e[eid].v = v;
e[eid].nxt = p[u];
p[u] = eid ++;
}
int n, col[N];
vector<int> a[N], b[N];
void dfs(int u, int o) {
col[u] = o;
for(int i = p[u]; i + 1; i = e[i].nxt) {
int v = e[i].v;
if(col[v]) continue;
dfs(v, - o);
}
}
int main() {
init();
scanf("%d", &n);
for(int i = 1; i <= n; i ++) {
int x, y;
scanf("%d%d", &x, &y);
a[x].push_back(i);
b[y].push_back(i);
}
for(int i = 1; i <= 200000; i ++) {
for(int j = 0; j < (int)a[i].size() - 1; j += 2) {
// printf("%d %d \n", a[i].size(), j);
int u = a[i][j], v = a[i][j + 1];
insert(u, v), insert(v, u);
}
for(int j = 0; j < (int)b[i].size() - 1; j += 2) {
int u = b[i][j], v = b[i][j + 1];
insert(u, v), insert(v, u);
}
}
for(int i = 1; i <= n; i ++) if(!col[i]) dfs(i, 1);
for(int i = 1; i <= n; i ++)
if(col[i] == 1) printf("r");
else printf("b");
return 0;
}
要学会行列分开考虑,出现偶数,成对等可以往二分图那里想