CF755F PolandBall and Gifts

这篇博客探讨了一道关于环形结构和多重背包问题的算法题目,通过二进制分组优化来求解。首先,将环中的元素按半数放入背包,然后处理奇数个元素。接着,计算最小的环组合,如果能恰好凑成目标值,则答案为n-k,否则为n-k-1。最后,利用bitset优化,实现nnlogn/wn的复杂度。代码中展示了如何实现这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.luogu.com.cn/problem/CF755F

还是有点意思的这题

首先考虑少的,显然每个环先放 c [ i ] / 2 c[i]/2 c[i]/2

然后再把奇环剩下的散点放了

考虑最小的,如果能找到若干个环大小加起来刚好为 k k k,那么答案就是 n − k n-k nk, 否则就是 n − k − 1 n-k-1 nk1

然后这个用二进制分组优化多重背包即可

可以用bitset优化到 n n l o g n / w n\sqrt{n}logn/w nn logn/w

#include<bits/stdc++.h>
#define N 1000050
using namespace std;
int n, m, cnt[N], vis[N], a[N], c[N], to[N];
void solve() {
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i ++) vis[i] = cnt[i] = c[i] = a[i] = 0;
    for(int i = 1; i <= n; i ++) scanf("%d", &to[i]);
    int gs = 0;
    for(int i = 1; i <= n; i ++) if(!vis[i]) {
        int x = i;
        c[++ gs] = 0;
        while(!vis[x]) {
            c[gs] ++;
            vis[x] = 1;
            x = to[x];
        }
        cnt[c[gs]] ++;
    }    

    int ans = 0;
    for(int i = 1; i <= gs; i ++) ans += (c[i] >> 1);

    int tot = 0;
    for(int i = 1; i <= n; i ++) if(cnt[i]) {
        for(int j = 1; cnt[i] >= j; j <<= 1)
            a[++ tot] = j * i, cnt[i] -= j;
        if(cnt[i]) a[++ tot] = cnt[i] * i;
    }

    bitset<N> f; f.reset();
    f[0] = 1;
    for(int i = 1; i <= tot; i ++) {
        f |= (f << a[i]);
    }

    if(f[m]) printf("%d ", m);
    else printf("%d ", m + 1);

    if(ans >= m) printf("%d", m << 1);
    else printf("%d ", (ans << 1) + min(m - ans, n - (ans << 1)));
}
int main() {
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值