bzoj 2134: 单选错位

本文解析了一道关于计算序列中每相邻两个元素相同情况下的期望分数的问题,并给出了具体的算法实现,采用C++代码实现了一个高效的求解方案。
日常扔扔扔:https://www.lydsy.com/JudgeOnline/problem.php?id=2134
首先这题的lc是没有什么用的,主要是反映了出题人的思想:考试做选择题乱选得到的分数都很高(相对填错来讲)

先简单说一下题意:给出一个序列每个元素的取值,询问每个元素和上一个元素相同的期望的和

很明显式子就是这样的

我们假设:

E(x) 为第 x 道题做对的期望

因为期望的和等于和的期望,所以我们只需把每个 x 的期望算出来就行了。

原本以为要用高斯消元,但推了一下式子发现不用

                                                    E(x) = \frac{1}{max(a_{i},a_{i-1})}*1 + (1-\frac{1}{max(a_{i},a_{i-1})})*0

因为乘0就不用管它了,那么右边就是我们要的,

然后把所有的相加即可

代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int A,B,C,n,a[10000005];
double ans,p;
int main(){
	scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
	for(int i=2;i<=n;i++)
		a[i] = ((ll)a[i-1] * A + B) % 100000001;
	for(int i=1;i<=n;i++) a[i]=a[i]%C+1;
	
	a[0]=a[n];
	for(int i=1;i<=n;i++){
		p=1*1.0/max(a[i],a[i-1]); //就是套上边的式子
		ans+=p;
	}
	
	printf("%.3f",ans);
	return 0;
}

这么简单的题竟然想了10分钟!!!

                                                        太naive

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值