Description
定义一个非空集合是合法的,当且仅当它满足以下两个条件。
1、集合内所有元素and和为0
2、它的非空子集中仅有它本身满足1
给出一个集合S,求它的合法非空子集数。
Input
第一行一个正整数n,表示|S|
第二行n个非负整数ai,表示集合内的元素。
n≤1000,ai<1024
Output
一个整数,表示S的合法非空子集数。答案可能很大,请mod 1e9+7之后输出。
Sample Input
4
1 2 4 4
Sample Output
5
样例解释:满足条件的集合为{1,2},{1,4},{1,4},{2,4},{2,4}
分析
转自栋爷的博客
先把给定集合所有数取反。
比如有效位数是4位,1101就变成0010。
那么问题变成,所有元素or和为1023,而去掉任意一个元素后or和均不为1023。
那么接下来我们来设一个诡异的状态。
因为要知道去掉一个人元素会不会使or和为1023,因此我们前后都要知道。
可以设一个f[i,j,k]表示做完了i个数,前面选择的一些数or和为j,我们希望后面选出的数or和为k。
然而随便推一推都觉得不会转移啊。。
这时赶紧改一下状态,设f[i,j,k]表示做完了i个数&