机器学习
文章平均质量分 95
爱记笔记的小菜
这个作者很懒,什么都没留下…
展开
-
A Transformer-based joint-encoding for Emotion Recognition and Sentiment Analysis
A Transformer-based joint-encoding for Emotion Recognition and Sentiment Analysis基于Transformer的情感识别和情感分析联合编码摘要1.简介2.相关工作3.模型3.1 单模态Transformer的编码3.2多模态Transformer编码3.3分类层4.特征提取4.1语言4.2声音4.3视觉5.数据集6.实验6.1实验设置6.2结果7.讨论8.总结摘要理解表达的情绪和情感是人类多模态语言的两个重要因素。本文提出了原创 2021-12-06 10:31:42 · 1166 阅读 · 1 评论 -
《机器学习》(西瓜书)周志华学习思维导图——第六、七章
本文主要介绍了机器学习中的常用算法支持向量机(SVM)和贝叶斯分类器。第六章 支持向量机支持向量机是一种常用的分类模型,分类学习的基本思想就是基于训练集在样本空间找到一个划分超平面,将不同类别的样本分开。学习的目标是为了找到具有最大间隔的划分超平面。第七章 贝叶斯分类器贝叶斯分类器是一类以贝叶斯定理为基础的分类算法的总称,其分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。朴素贝叶斯分类器是贝叶斯分类器中最常用的一种原创 2020-05-30 16:36:11 · 2565 阅读 · 1 评论 -
《机器学习》(西瓜书)周志华学习思维导图——第三、四、五章
本文主要介绍了西瓜书中的线性模型,决策树,神经网络的相关章节内容。第三章 线性模型线性模型是机器学习中最基本的模型,蕴含着机器学习中一些重要的基本思想,许多功能强大的非线性模型都是在线性模型的基础上加以改变得到的。第四章 决策树决策树,亦称“判定树”,是一类常用的机器学习算法。决策树基于树结构进行决策,这恰是人类在面临决策问题时一种很自然的处理机制。第五章 神经网络随着计算能力的迅猛提升和大数据的涌现,神经网络迎来了第三次高潮。它是目前最为火热的研究方向之一——深度学习的基础。神经网络是一个强原创 2020-05-28 10:29:14 · 4021 阅读 · 0 评论 -
《机器学习》-周志华学习思维导图——前两章
学习机器学习,最基础的一本书就是周志华的西瓜书,即《机器学习》,就是下面这本书啦。接下来,为大家展示的是我在mindmaster上整理的西瓜书每章的思维导图,希望能够帮助大家理解和学习。下面只列举了前两章的思维导图,后续还会持续更新。第一章 绪论第二章 模型评估与选择本文中为个人自行整理的《机器学习》学习思维导图,转载请注明原文链接。...原创 2020-05-27 18:37:59 · 1122 阅读 · 0 评论