什么叫正多面体,正多面体的意思就是,
每个面是完全相同的正多边形,
而正多边形每条边都相同。
正多边形可以有
正三角形、
正四边形、
正五边形、
正六边形……
这么多正多边形要组成一个立体的话,可以构成几个?
柏拉图学派证明了有且只有五个
我们可以做一个不太严格的证明。
要构成一个立体角,就要求构成这些立体角的各个面的角度加起来必须小于360度,等于都不行。
正多边形边越多,内角就越大,
正三角形的内角度是60度,
正四边形是90度,
正五边形108度,
正六边形是120度。
构成一个立体角至少需要三条棱,如果是120度的话,乘以3就360度了,
所以,正六边形就不能构成一个立体角。
换而言之,正多面体只能由正三角形、正四边形和正五边形这三种正多边形构成。
如果用正三角形的话,
每个角60度,
可以有3条棱、4条棱、5条棱三种可能,
分别可以构成正四面体、正八面体和正二十面体。
6条棱就不行了。
正四边形每个角90度,只有3条棱一种可能性,可以构成正方体。
正五边形每个角108度,只有3条棱一种可能性,可以构成正十二面体。
所有可能的结果加起来就是,正多面体有且只有五个。
柏拉图学派认为,正多面体是多面体中最美妙的,因为它的每条边一样长,每个面一样大,可是,它居然就只有五个。
对数字非常敏感的毕达哥拉斯主义学派来说,这个数字五就必然很有说道。怎么就这么巧,正多面体有且只有五个呢?
哥白尼体系提出来以后,太阳成了宇宙的中心,围绕太阳旋转的行星成了六个,分别是水星、金星、地球、火星、木星、土星。
开普勒是当时著名的哥白尼主义者,
也是个狂热的毕达哥拉斯主义者。
于是他就琢磨,行星有六个,正多面体有五个,要说它们之间毫无联系怎么可能呢?
于是,他就拼命地去琢磨这六个行星的轨道。琢磨来琢磨去,终于有一天他琢磨出来了。
通过五个正多面体,
进行内切和外接的嵌套,
可以产生六个球,
这些球的大小正好符合六个行星的轨道尺寸。
他想出来以后,特别兴奋,有一种发现了世界秘密的感觉,于是写了一本书,叫《宇宙的奥秘》。
那本书问世以后,被另外一个天文学家第谷看到了。
第谷发现,这个人的数学功底真不错,就决定收他为徒。
第谷本人不是数学家,
但是他有很多重大天文发现和系统而精确的天文记录,
特别是,他有非常完整的火星位置数据。
开普勒继承了第谷的数据,在此基础上最终发现了行星运动的三定律。
开普勒三定律直接导向了牛顿的万有引力定律,是天文学史上一个非常伟大的发现。
五个多面体这个概念
引发了很多问题
激励了很多研究活动