五个正多面体与牛顿力学

什么叫正多面体,正多面体的意思就是,
	每个面是完全相同的正多边形,	
	而正多边形每条边都相同。
	正多边形可以有
		正三角形、
		正四边形、
		正五边形、
		正六边形……
	这么多正多边形要组成一个立体的话,可以构成几个?
	柏拉图学派证明了有且只有五个

我们可以做一个不太严格的证明。
	要构成一个立体角,就要求构成这些立体角的各个面的角度加起来必须小于360度,等于都不行。
	正多边形边越多,内角就越大,
		正三角形的内角度是60度,
		正四边形是90度,
		正五边形108度,
		正六边形是120度。
	构成一个立体角至少需要三条棱,如果是120度的话,乘以3就360度了,
		所以,正六边形就不能构成一个立体角。
		换而言之,正多面体只能由正三角形、正四边形和正五边形这三种正多边形构成。
	如果用正三角形的话,
		每个角60度,
		可以有3条棱、4条棱、5条棱三种可能,
		分别可以构成正四面体、正八面体和正二十面体。
		6条棱就不行了。
	正四边形每个角90度,只有3条棱一种可能性,可以构成正方体。
	正五边形每个角108度,只有3条棱一种可能性,可以构成正十二面体。
	所有可能的结果加起来就是,正多面体有且只有五个。

柏拉图学派认为,正多面体是多面体中最美妙的,因为它的每条边一样长,每个面一样大,可是,它居然就只有五个。
	对数字非常敏感的毕达哥拉斯主义学派来说,这个数字五就必然很有说道。怎么就这么巧,正多面体有且只有五个呢?

哥白尼体系提出来以后,太阳成了宇宙的中心,围绕太阳旋转的行星成了六个,分别是水星、金星、地球、火星、木星、土星。
	开普勒是当时著名的哥白尼主义者,
	也是个狂热的毕达哥拉斯主义者。
	于是他就琢磨,行星有六个,正多面体有五个,要说它们之间毫无联系怎么可能呢?
	于是,他就拼命地去琢磨这六个行星的轨道。琢磨来琢磨去,终于有一天他琢磨出来了。
		通过五个正多面体,
		进行内切和外接的嵌套,
		可以产生六个球,
		这些球的大小正好符合六个行星的轨道尺寸。

他想出来以后,特别兴奋,有一种发现了世界秘密的感觉,于是写了一本书,叫《宇宙的奥秘》。
	那本书问世以后,被另外一个天文学家第谷看到了。
	第谷发现,这个人的数学功底真不错,就决定收他为徒。

第谷本人不是数学家,
	但是他有很多重大天文发现和系统而精确的天文记录,
	特别是,他有非常完整的火星位置数据。
	开普勒继承了第谷的数据,在此基础上最终发现了行星运动的三定律。

开普勒三定律直接导向了牛顿的万有引力定律,是天文学史上一个非常伟大的发现。

五个多面体这个概念
	引发了很多问题
	激励了很多研究活动

	


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穿越辩证法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值