- 博客(4)
- 收藏
- 关注
原创 第五周作业:卷积神经网络(Part3)
目录MobileNetHybridSN 高光谱分类MobileNet本周学习MobileNet v1 和 MobielNet v2。MobileNet的提出是为了减少神经网络的参数,在不过多损失准确率的情况下提升其性能。其基本思想是把卷积分解成Depthwise+Pointwise卷积,减少了可训练参数,降低了计算复杂度。具体来说,Depthwise卷积将每个输入的特征按通道分别进行卷积,Pointwise卷积采用1*1卷积将Depthwise卷积产生的特征图进行通道上的融合。我
2021-10-03 15:01:12 891
原创 第三周作业:卷积神经网络(Part 1)
卷积神经网络学习内容总结 卷积网络本质上也是一个MLP,不过我们在计算的时候,对原来的计算方式进行了修改。具体来说我们对每一层的神经元进行了特别的索引,每次只选取固定的几个神经元对输入进行计算,这样就实现了“参数共享”的效果,因为不管输入特征的尺度有多大,我们只采用固定的神经元进行计算。 从更形象的角度来讲,卷积是用一组神经元(通常我们为其赋予空间尺度的形象),采用滑动的形式对输入进行处理,每次滑动处理一个窗口的信息,窗口的大小即为卷积核的大小(一般而言是这样,空洞卷积例...
2021-09-18 13:09:40 1732 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人