NNDL 实验五 前馈神经网络(3)鸢尾花分类

目录

深入研究鸢尾花数据集

4.5 实践:基于前馈神经网络完成鸢尾花分类

4.5.1 小批量梯度下降法

4.5.2 数据处理

4.5.3 模型构建

4.5.4 完善Runner类

4.5.5 模型训练

4.5.6 模型评价

4.5.7 模型预测

思考题

总结


深入研究鸢尾花数据集

画出数据集中150个数据的前两个特征的散点分布图:

【统计学习方法】感知机对鸢尾花(iris)数据集进行二分类

4.5 实践:基于前馈神经网络完成鸢尾花分类

继续使用第三章中的鸢尾花分类任务,将Softmax分类器替换为前馈神经网络

  • 损失函数:交叉熵损失;
  • 优化器:随机梯度下降法;
  • 评价指标:准确率。

4.5.1 小批量梯度下降法

为了减少每次迭代的计算复杂度,我们可以在每次迭代时只采集一小部分样本,计算在这组样本上损失函数的梯度并更新参数,这种优化方式称为小批量梯度下降法(Mini-Batch Gradient Descent,Mini-Batch GD)。

为了小批量梯度下降法,我们需要对数据进行随机分组。

目前,机器学习中通常做法是构建一个数据迭代器,每个迭代过程中从全部数据集中获取一批指定数量的数据。

4.5.2 数据处理

4.5.3 模型构建

输入层神经元个数为4,输出层神经元个数为3,隐含层神经元个数为6。

 

4.5.4 完善Runner类

4.5.5 模型训练

4.5.6 模型评价

4.5.7 模型预测


思考题

1. 对比Softmax分类和前馈神经网络分类。(必做)

  分类效果图可参考:

 

2. 自定义隐藏层层数每个隐藏层中的神经元个数,尝试找到最优超参数完成多分类。(选做)

3. 对比SVMFNN分类效果,谈谈自己看法。(选做)

4. 尝试基于MNIST手写数字识别数据集,设计合适的前馈神经网络进行实验,并取得95%以上的准确率。(选做)


总结

1. 总结本次实验;

2. 全面总结前馈神经网络,梳理知识点,建议画思维导图

例如:


ref:

NNDL 实验4(下) - HBU_DAVID - 博客园 (cnblogs.com)

2.5. 自动微分 — 动手学深度学习 2.0.0-beta1 documentation (d2l.ai)

4.7. 前向传播、反向传播和计算图 — 动手学深度学习 2.0.0-beta1 documentation (d2l.ai)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值