中国大学MOOC-陈越、何钦铭-数据结构
07-图6 旅游规划 (25 分)
有了一张自驾旅游路线图,你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。
输入格式:
输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。
输出格式:
在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。
输入样例:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
输出样例:
3 40
算法思想:
首先问题抽象为带权无向图,权值为两类,以距离为主,价格为辅。根据题意,以出发城市为起点直接Dijkstra即可,最后再输出终点城市的Dist[D]和Pay[D]。
/***************2019.05.02-09:00-10:15 12:40-12:56***********/
//07-图6 旅游规划 1.5h
#include<stdio.h>
#include<stdlib.h>
#include<queue>
using namespace std;
#define MaxVertexNum 502
typedef struct AdjVNode *AdjV;
struct AdjVNode{
int Adjv;
int Len;
int Cost;
AdjV Next;
};
typedef struct GNode{
int City;
AdjV FirstEdge;
}AdjVList[MaxVertexNum];
struct Graph{
int Nv,Ne;
AdjVList G;
}LGraph;
int main(){
int N,M,S,D;
int i,j;
int V1,V2,Len,Cost;
scanf("%d%d%d%d",&N,&M,&S,&D);
LGraph.Nv=N;
LGraph.Ne=M;
for(i=0;i<N;i++) LGraph.G[i].FirstEdge=NULL;//初始化表头结点
for(i=0;i<M;i++){ //插入边表结点
scanf("%d%d%d%d",&V1,&V2,&Len,&Cost);
AdjV X=(AdjV)malloc(sizeof(struct AdjVNode));
X->Adjv=V2;
X->Len=Len;
X->Cost=Cost;
X->Next=LGraph.G[V1].FirstEdge;
LGraph.G[V1].FirstEdge=X;
X=(AdjV)malloc(sizeof(struct AdjVNode));
X->Adjv=V1;
X->Len=Len;
X->Cost=Cost;
X->Next=LGraph.G[V2].FirstEdge;
LGraph.G[V2].FirstEdge=X;
}
int Dist[N],Path[N],Pay[N];
for(i=0;i<N;i++){
Dist[i]=999999;
Path[i]=-1;
Pay[i]=999999;
}
queue<int> Q;
Q.push(S);
Dist[S]=0;
Pay[S]=0;
while(!Q.empty()){
i=Q.front();
Q.pop();
AdjV tmp=LGraph.G[i].FirstEdge;
while(tmp){
j=tmp->Adjv;
if(Dist[i]+tmp->Len<Dist[j]){
Dist[j]=Dist[i]+tmp->Len;
Pay[j]=Pay[i]+tmp->Cost;
Path[j]=i;
Q.push(j);
}
else if(Dist[i]+tmp->Len==Dist[j]){//!!!!!!!!!!!!!
if(Pay[j]>Pay[i]+tmp->Cost){
Pay[j]=Pay[i]+tmp->Cost;
Path[j]=i;
Q.push(j);
}
}
tmp=tmp->Next;
}
}
printf("%d %d",Dist[D],Pay[D]);
return 0;
}