07-图6 旅游规划(Dijkstra算法)

中国大学MOOC-陈越、何钦铭-数据结构

07-图6 旅游规划 (25 分)

有了一张自驾旅游路线图,你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。

输入格式:

输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。

输出格式:

在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。

输入样例:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

输出样例:

3 40

算法思想: 

首先问题抽象为带权无向图,权值为两类,以距离为主,价格为辅。根据题意,以出发城市为起点直接Dijkstra即可,最后再输出终点城市的Dist[D]和Pay[D]。

/***************2019.05.02-09:00-10:15   12:40-12:56***********/
//07-图6 旅游规划  1.5h
#include<stdio.h>
#include<stdlib.h>
#include<queue>
using namespace std;
#define MaxVertexNum 502


typedef struct AdjVNode *AdjV;
struct AdjVNode{
	int Adjv;
	int Len;
	int Cost;
	AdjV Next;
};

typedef struct GNode{
	int City;
    AdjV FirstEdge;
}AdjVList[MaxVertexNum];

struct Graph{
	int Nv,Ne;
	AdjVList G;
}LGraph;


int main(){
	int N,M,S,D;
	int i,j;
	int V1,V2,Len,Cost;
	scanf("%d%d%d%d",&N,&M,&S,&D);
	LGraph.Nv=N;
	LGraph.Ne=M;
	for(i=0;i<N;i++) LGraph.G[i].FirstEdge=NULL;//初始化表头结点 
	
	for(i=0;i<M;i++){           //插入边表结点 
		scanf("%d%d%d%d",&V1,&V2,&Len,&Cost);
		AdjV X=(AdjV)malloc(sizeof(struct AdjVNode));
		X->Adjv=V2;
		X->Len=Len;
		X->Cost=Cost;
		X->Next=LGraph.G[V1].FirstEdge;
		LGraph.G[V1].FirstEdge=X;
		
		X=(AdjV)malloc(sizeof(struct AdjVNode));
		X->Adjv=V1;
		X->Len=Len;
		X->Cost=Cost;
		X->Next=LGraph.G[V2].FirstEdge;
		LGraph.G[V2].FirstEdge=X;
	}
	
	int Dist[N],Path[N],Pay[N];
	for(i=0;i<N;i++){
		Dist[i]=999999;
		Path[i]=-1;
		Pay[i]=999999;
	}
	
	queue<int> Q;
	Q.push(S);
	Dist[S]=0;
	Pay[S]=0;
	while(!Q.empty()){
		i=Q.front();
		Q.pop();
		AdjV tmp=LGraph.G[i].FirstEdge;
		while(tmp){
			j=tmp->Adjv;
			if(Dist[i]+tmp->Len<Dist[j]){
				Dist[j]=Dist[i]+tmp->Len;
				Pay[j]=Pay[i]+tmp->Cost;
				Path[j]=i;
				Q.push(j);
			}
			else if(Dist[i]+tmp->Len==Dist[j]){//!!!!!!!!!!!!!
				if(Pay[j]>Pay[i]+tmp->Cost){
					Pay[j]=Pay[i]+tmp->Cost;
					Path[j]=i;
					Q.push(j);
				}
			}
			tmp=tmp->Next;
		}
	}
	printf("%d %d",Dist[D],Pay[D]);
	
	
	return 0;
}
 




 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值