二叉堆

 1. 堆(Heap)是一种树状的数据结构, 但是在堆中任意节点的值总是 ≥( ≤ )子节点的值, 并且堆中的元素必须具备可比较性
如果任意节点的值总是 ≥ 子节点的值,称为:最大堆、大根堆、大顶堆
如果任意节点的值总是 ≤ 子节点的值,称为:最小堆、小根堆、小顶堆

2. 二叉堆的逻辑结构就是一棵完全二叉树,所以也叫完全二叉堆, 鉴于完全二叉树的一些特性,二叉堆的底层(物理结构)一般用数组实现即可
索引 i 的规律( n 是元素数量) 
    如果 i = 0 ,它是根节点
    如果 i > 0 ,它的父节点的索引为 floor( (i – 1) / 2 )
    如果 2i + 1 ≤ n – 1,它的左子节点的索引为 2i + 1 如果 2i + 1 > n – 1 ,它无左子节点
    如果 2i + 2 ≤ n – 1 ,它的右子节点的索引为 2i + 2 如果 2i + 2 > n – 1 ,它无右子节点

                      

 

最大堆的添加

例: 添加元素80

循环执行以下操作:
     如果 node > 父节点: 与父节点交换位置
     如果 node <= 父节点, 或者 node 没有父节点: 退出循环

这个过程,叫做上滤( Sift Up) 时间复杂度: O(logn)

流程图如下:

优化点: 将新添加的节点备份, 在进行比较时, 如果需要进行上虑操作的话, 就先使用父节点覆盖这个节点, 直至找到不再需要进行上虑的的位置, 然后使用新添加的节点覆盖即可;

/**
 * 在数组末尾新增一个元素, 然后进行上虑找到合适的位置
 */
public void add(E element) {
    elementNotNullCheck(element);  //判断元素是否合法
    ensureCapacity(size + 1);      //数组是否需要扩容
    elements[size++] = element;
    siftUp(size - 1);
}

/**
 * 让index位置的元素上滤
 * @param index
 */
private void siftUp(int index) {
    E element = elements[index];
    while (index > 0) {
        int parentIndex = (index - 1) >> 1;
        E parent = elements[parentIndex];
        if (compare(element, parent) <= 0) break;
        
        // 将父元素存储在index位置
        elements[index] = parent;
        
        // 重新赋值index
        index = parentIndex;
    }
    elements[index] = element;
}

最大堆的删除

1.用最后一个节点覆盖根节点 
2.删除最后一个节点 
3.循环执行以下操作:
          如果 node < 最大的子节点: 与最大的子节点交换位置 
          如果 node ≥ 最大的子节点, 或者 node 没有子节点: 退出循环

这个过程,叫做下滤(Sift Down), 时间复杂度: O(logn)
同样, 交换位置的操作可以像添加那样进行优化

/**
 * 删除堆顶元素
 */
public E remove() {
    emptyCheck();
    
    int lastIndex = --size;
    E root = elements[0];
    elements[0] = elements[lastIndex];
    elements[lastIndex] = null;
   
    siftDown(0);
    return root;
}

/**
 * 让index位置的元素下滤
 * @param index
 */
private void siftDown(int index) {
    E element = elements[index];
    int half = size >> 1;
    // 第一个叶子节点的索引 == 非叶子节点的数量
    // index < 第一个叶子节点的索引
    // 必须保证index位置是非叶子节点
    while (index < half) { 
        // index的节点有2种情况
        // 1.只有左子节点
        // 2.同时有左右子节点
        
        // 默认为左子节点跟它进行比较
        int childIndex = (index << 1) + 1;
        E child = elements[childIndex];
        
        // 右子节点
        int rightIndex = childIndex + 1;
        
        // 选出左右子节点最大的那个
        if (rightIndex < size && compare(elements[rightIndex], child) > 0) {
            child = elements[childIndex = rightIndex];
        }
        if (compare(element, child) >= 0) break;

        // 将子节点存放到index位置
        elements[index] = child;
        // 重新设置index
        index = childIndex;
    }
    elements[index] = element;
}

 

批量建堆(Heapify)

自上而下的上虑

注意: 绿色图标为进行上虑操作后该位置的元素; 在每一个上虑操作完成后, 数组中存储的元素顺序都可能发生变化

/**
 * 批量建堆
 */
public BinaryHeap(E[] elements, Comparator<E> comparator)  {
    super(comparator);
    
    if (elements == null || elements.length == 0) {
        this.elements = (E[]) new Object[DEFAULT_CAPACITY];
    } else {
        size = elements.length;
        int capacity = Math.max(elements.length, DEFAULT_CAPACITY);
        this.elements = (E[]) new Object[capacity];
        for (int i = 0; i < elements.length; i++) {
            this.elements[i] = elements[i];
        }
        heapify();
    }
} 

private void heapify() {
    // 自上而下的上滤
    for (int i = 1; i < size; i++) {
        siftUp(i);
    }
}

/**
 * 让index位置的元素上滤
 * @param index
 */
private void siftUp(int index) {
    E element = elements[index];
    while (index > 0) {
        int parentIndex = (index - 1) >> 1;
        E parent = elements[parentIndex];
        if (compare(element, parent) <= 0) break;
        
        // 将父元素存储在index位置
        elements[index] = parent;
        
        // 重新赋值index
        index = parentIndex;
    }
    elements[index] = element;
}

自下而上的下虑

/**
 * 批量建堆
 */
public BinaryHeap(E[] elements, Comparator<E> comparator)  {
    super(comparator);
    
    if (elements == null || elements.length == 0) {
        this.elements = (E[]) new Object[DEFAULT_CAPACITY];
    } else {
        size = elements.length;
        int capacity = Math.max(elements.length, DEFAULT_CAPACITY);
        this.elements = (E[]) new Object[capacity];
        for (int i = 0; i < elements.length; i++) {
            this.elements[i] = elements[i];
        }
        heapify();
    }
} 

/**
 * 批量建堆
 */
private void heapify() {
    // 自下而上的下滤
    for (int i = (size >> 1) - 1; i >= 0; i--) {
        siftDown(i);
    }
}

/**
 * 让index位置的元素下滤
 * @param index
 */
private void siftDown(int index) {
    E element = elements[index];
    int half = size >> 1;
    // 第一个叶子节点的索引 == 非叶子节点的数量
    // index < 第一个叶子节点的索引
    // 必须保证index位置是非叶子节点
    while (index < half) { 
        // index的节点有2种情况
        // 1.只有左子节点
        // 2.同时有左右子节点
        
        // 默认为左子节点跟它进行比较
        int childIndex = (index << 1) + 1;
        E child = elements[childIndex];
        
        // 右子节点
        int rightIndex = childIndex + 1;
        
        // 选出左右子节点最大的那个
        if (rightIndex < size && compare(elements[rightIndex], child) > 0) {
            child = elements[childIndex = rightIndex];
        }
        
        if (compare(element, child) >= 0) break;

        // 将子节点存放到index位置
        elements[index] = child;
        // 重新设置index
        index = childIndex;
    }
    elements[index] = element;
}

批量建堆效率比较

 所有节点的深度之和:
仅仅是叶子节点,就有近 n/2 个,而且每一个叶子节点的深度都是 O(logn) 级别的 
因此,在叶子节点这一块,就达到了 O(nlogn) 级别 
O(nlogn) 的时间复杂度足以利用排序算法对所有节点进行全排序

所有节点的高度之和:
假设是满树,节点总个数为 n,树高为 h,那么 n = 2h − 1 
所有节点的树高之和 H(n) = 20 ∗ h − 0 + 21 ∗ h − 1 + 22 ∗ h − 2 + ⋯+ 2h −1 ∗ h − h − 1 
H(n) = h ∗ 20 + 21 + 22 + ⋯+ 2h −1 − 1 ∗ 21 + 2 ∗ 22 + 3 ∗ 23 + ⋯+ h − 1 ∗ 2h−1 
H(n) = h ∗ 2h − 1 − h − 2 ∗ 2h + 2 
H(n) = h ∗ 2h − h − h ∗ 2h + 2h+1 − 2 
H(n) = 2h+1 − h − 2 = 2 ∗ (2h − 1) − h = 2n − h = 2n − log2(n + 1) = O(n)


TOP K 问题

问题: 从 n 个整数中,找出最大的前 k 个数( k 远远小于 n )

思路:
1. 新建一个小顶堆
2. 扫描 n 个整数 
  先将遍历到的前 k 个数放入堆中 
  从第 k + 1 个数开始, 如果大于堆顶元素, 就使用 replace 操作(删除堆顶元素, 将第 k + 1 个数添加到堆中)
3. 扫描完毕后,堆中剩下的就是最大的前 k个数

代码:

// 新建一个小顶堆
BinaryHeap<Integer> heap = new BinaryHeap<>(new Comparator<Integer>() {
    public int compare(Integer o1, Integer o2) {
        return o2 - o1;
    }
});

// 找出最大的前k个数
int k = 3;
Integer[] data = {51, 30, 39, 92, 74, 25, 16, 93, 91, 19, 54, 47, 73, 62, 76, 63, 35, 18, 90, 6, 65, 49, 3, 26, 61, 21, 48};
for (int i = 0; i < data.length; i++) {
    if (heap.size() < k) { // 前k个数添加到小顶堆
        heap.add(data[i]); // logk
    } else if (data[i] > heap.get()) { // 如果是第k + 1个数,并且大于堆顶元素
        heap.replace(data[i]); // logk
    }
}

参考资料: <<恋上数据结构与算法>>

 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二叉堆是一种特殊的二叉树数据结构,它满足以下两个条件: 1. 父节点的值总是大于或等于(或小于或等于)其子节点的值。 2. 二叉堆是一棵完全二叉树,即除了最底层,其他层的节点个数都是满的,并且最底层的节点都尽可能地对齐。 在Python中,我们可以使用内置的heapq模块来实现二叉堆。heapq模块提供了一些函数来操作堆,例如heappush、heappop、heapify等。 以下是一个简单的示例代码,演示如何使用heapq模块来构建和操作二叉堆: ```python import heapq # 创建一个空的二叉堆 heap = [] # 向堆中插入元素 heapq.heappush(heap, 5) heapq.heappush(heap, 2) heapq.heappush(heap, 10) heapq.heappush(heap, 1) # 弹出堆中的最小元素 min_element = heapq.heappop(heap) print(min_element) # 输出: 1 # 查看堆中的最小元素(不弹出) min_element = heap[0] print(min_element) # 输出: 2 # 将列表转换为堆 nums = [4, 8, 3, 6, 1] heapq.heapify(nums) # 弹出堆中的最小元素 min_element = heapq.heappop(nums) print(min_element) # 输出: 1 ``` 上述代码中,我们首先创建了一个空的二叉堆,然后使用heappush函数向堆中插入元素。通过heappop函数,我们可以弹出堆中的最小元素。如果只是查看最小元素而不弹出,可以直接访问heap[0]。还可以使用heapify函数将一个普通的列表转换为二叉堆。 希望这个简单的示例能帮助你理解Python中二叉堆的概念和使用方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值