目录
思考
1. 如果要经常判断 1 个元素是否存在,会怎么做?
很容易想到使用哈希表(HashSet、HashMap),将元素作为 key 去查找
时间复杂度:O(1),但是空间利用率不高,需要占用比较多的内存资源2. 如果需要编写一个网络爬虫去爬10亿个网站数据,为了避免爬到重复的网站,如何判断某个网站是否爬过?
很显然,HashSet、HashMap 并不是非常好的选择是否存在时间复杂度低、占用内存较少的方案?
布隆过滤器(Bloom Filter)
布隆过滤器 (Bloom Filter)
布隆过滤器是一个空间效率高的概率型数据结构,可以用来判断一个元素一定不存在或者可能存在
优缺点
优点:空间效率和查询时间都远远超过一般的算法
缺点:有一定的误判率、删除困难
它实质上是一个很长的二进制向量和一系列随机映射函数(Hash函数)
常见应用: 网页黑名单系统、垃圾邮件过滤系统、爬虫的网址判重系统、解决缓存穿透问题
布隆过滤器的原理
假设布隆过滤器由 20位二进制、 3 个哈希函数组成,每个元素经过哈希函数处理都能生成一个索引位置
添加元素:
将每一个哈希函数生成的索引位置都设为 1
查询元素是否存在:
如果有一个哈希函数生成的索引位置不为 1,就代表不存在(100%准确)
如果每一个哈希函数生成的索引位置都为 1,就代表存在(存在一定的误判率)
添加、查询的时间复杂度都是: O(k), k 是哈希函数的个数。空间复杂度是: O(m), m 是二进制位的个数
布隆过滤器的误判率
误判率 p 受 3 个因素影响:二进制位的个数 m、哈希函数的个数 k、数据规模n
已知误判率 p、数据规模 n, 求二进制位的个数 m、哈希函数的个数k
布隆过滤器的实现
public class BloomFilter<T> {
/**
* 二进制向量的长度(一共有多少个二进制位)
*/
private int bitSize;
/**
* 二进制向量 (long数组, 每个long占用64位)
*/
private long[] bits;
/**
* 哈希函数的个数
*/
private int hashSize;
/**
* @param n 数据规模
* @param p 误判率, 取值范围:(0,1)
*/
public BloomFilter(int n, double p) {
if(n <= 0 || p >= 1){
throw new IllegalArgumentException("Wrong n Or p!!!");
}
double ln2 = Math.log(2);
// 求出二进制向量的长度
bitSize = (int) (- (n * Math.log(p)) / (ln2 * ln2));
// 求出哈希函数的个数
hashSize = (int) (bitSize * ln2 / n);
// bits数组(long数组)的长度
bits = new long[(bitSize + Long.SIZE - 1) / Long.SIZE];
}
/**
* 添加元素
* @param value
* @return
*/
public boolean put(T value){
nullCheck(value);
// 利用value生成2个整数
int hash1 = value.hashCode();
int hash2 = hash1 >>> 16;
boolean result = false;
/**
* 对value进行hashSize次hash计算, 将每次计算出来的索引对应的二进制位数据置为1
*/
for (int i = 1; i <= hashSize; i++) {
int combinedHash = hash1 + (i * hash2);
if (combinedHash < 0) {
combinedHash = ~combinedHash;
}
// 生成一个二进位的索引
int index = combinedHash % bitSize;
// 设置index位置的二进位为1
if (setBits(index)) result = true;
}
return result;
}
/**
* 判断一个元素是否存在
* @param value
* @return
*/
public boolean contain(T value){
nullCheck(value);
// 利用value生成2个整数
int hash1 = value.hashCode();
int hash2 = hash1 >>> 16;
for (int i = 1; i <= hashSize; i++) {
int combinedHash = hash1 + (i * hash2);
if (combinedHash < 0) {
combinedHash = ~combinedHash;
}
// 生成一个二进位的索引
int index = combinedHash % bitSize;
// 查询index位置的二进位是否为0
if (!getBits(index)) return false;
}
return true;
}
private boolean setBits(int index){
//计算索引处于哪一个long数据中
long value = bits[index / Long.SIZE];
//计算索引所处于long数据中的位置
int bitValue = 1 << (index % Long.SIZE);
//将索引位置的二进制位置为1
bits[index / Long.SIZE] = value | bitValue;
return (value & bitValue) == 0;
}
private boolean getBits(int index){
//计算索引处于哪一个long数据中
long value = bits[index / Long.SIZE];
//获取索引位置的二进制位数据是否为0
return (value & (1 << (index % Long.SIZE))) != 0;
}
private void nullCheck(T value) {
if (value == null) {
throw new IllegalArgumentException("Value must not be null.");
}
}
}
Guava: Google Core Libraries For Java
https://mvnrepository.com/artifact/com.google.guava/guava