布隆过滤器

目录

思考

布隆过滤器 (Bloom Filter)

布隆过滤器的原理

布隆过滤器的误判率

布隆过滤器的实现


思考

1. 如果要经常判断 1 个元素是否存在,会怎么做?
       很容易想到使用哈希表(HashSet、HashMap),将元素作为 key 去查找
       时间复杂度:O(1),但是空间利用率不高,需要占用比较多的内存资源

2. 如果需要编写一个网络爬虫去爬10亿个网站数据,为了避免爬到重复的网站,如何判断某个网站是否爬过?
       很显然,HashSet、HashMap 并不是非常好的选择

是否存在时间复杂度低、占用内存较少的方案?
布隆过滤器(Bloom Filter)

布隆过滤器 (Bloom Filter)

布隆过滤器是一个空间效率高的概率型数据结构,可以用来判断一个元素一定不存在或者可能存在

优缺点
优点:空间效率和查询时间都远远超过一般的算法
缺点:有一定的误判率、删除困难

它实质上是一个很长的二进制向量和一系列随机映射函数(Hash函数)

常见应用: 网页黑名单系统、垃圾邮件过滤系统、爬虫的网址判重系统、解决缓存穿透问题

布隆过滤器的原理

假设布隆过滤器由 20位二进制、 3 个哈希函数组成,每个元素经过哈希函数处理都能生成一个索引位置
添加元素:
    将每一个哈希函数生成的索引位置都设为 1
查询元素是否存在:
    如果有一个哈希函数生成的索引位置不为 1,就代表不存在(100%准确)
    如果每一个哈希函数生成的索引位置都为 1,就代表存在(存在一定的误判率)

添加、查询的时间复杂度都是: O(k), k 是哈希函数的个数。空间复杂度是: O(m), m 是二进制位的个数

布隆过滤器的误判率

误判率 p 受 3 个因素影响:二进制位的个数 m、哈希函数的个数 k、数据规模n

已知误判率 p、数据规模 n, 求二进制位的个数 m、哈希函数的个数k

  

布隆过滤器的实现

public class BloomFilter<T> {
    /**
     * 二进制向量的长度(一共有多少个二进制位)
     */
    private int bitSize;

    /**
     * 二进制向量 (long数组, 每个long占用64位)
     */
    private long[] bits;

    /**
     * 哈希函数的个数
     */
    private int hashSize;

    /**
     * @param n 数据规模
     * @param p 误判率, 取值范围:(0,1)
     */
    public BloomFilter(int n, double p) {
        if(n <= 0 || p >= 1){
            throw new IllegalArgumentException("Wrong n Or p!!!");
        }
        double ln2 = Math.log(2);
        // 求出二进制向量的长度
        bitSize = (int) (- (n * Math.log(p)) / (ln2 * ln2));
        // 求出哈希函数的个数
        hashSize = (int) (bitSize * ln2 / n);
        // bits数组(long数组)的长度
        bits = new long[(bitSize + Long.SIZE - 1) / Long.SIZE];
    }

    /**
     * 添加元素
     * @param value
     * @return
     */
    public boolean put(T value){
        nullCheck(value);

        // 利用value生成2个整数
        int hash1 = value.hashCode();
        int hash2 = hash1 >>> 16;

        boolean result = false;
        /**
         * 对value进行hashSize次hash计算, 将每次计算出来的索引对应的二进制位数据置为1
         */
        for (int i = 1; i <= hashSize; i++) {
            int combinedHash = hash1 + (i * hash2);
            if (combinedHash < 0) {
                combinedHash = ~combinedHash;
            }
            // 生成一个二进位的索引
            int index = combinedHash % bitSize;
            // 设置index位置的二进位为1
            if (setBits(index)) result = true;
        }
        return result;
    }

    /**
     * 判断一个元素是否存在
     * @param value
     * @return
     */
    public boolean contain(T value){
        nullCheck(value);
        // 利用value生成2个整数
        int hash1 = value.hashCode();
        int hash2 = hash1 >>> 16;

        for (int i = 1; i <= hashSize; i++) {
            int combinedHash = hash1 + (i * hash2);
            if (combinedHash < 0) {
                combinedHash = ~combinedHash;
            }
            // 生成一个二进位的索引
            int index = combinedHash % bitSize;
            // 查询index位置的二进位是否为0
            if (!getBits(index)) return false;
        }
        return true;
    }

    private boolean setBits(int index){
        //计算索引处于哪一个long数据中
        long value = bits[index / Long.SIZE];
        //计算索引所处于long数据中的位置
        int bitValue = 1 << (index % Long.SIZE);
        //将索引位置的二进制位置为1
        bits[index / Long.SIZE] = value | bitValue;
        return (value & bitValue) == 0;
    }

    private boolean getBits(int index){
        //计算索引处于哪一个long数据中
        long value = bits[index / Long.SIZE];
        //获取索引位置的二进制位数据是否为0
        return (value & (1 << (index % Long.SIZE))) != 0;
    }

    private void nullCheck(T value) {
        if (value == null) {
            throw new IllegalArgumentException("Value must not be null.");
        }
    }
}

Guava: Google Core Libraries For Java
https://mvnrepository.com/artifact/com.google.guava/guava

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值