链接
题目
给定一个整数数组,编写一个函数,找出索引m和n,只要将索引区间[m,n]的元素排好序,整个数组就是有序的。注意:n-m尽量最小,也就是说,找出符合条件的最短序列。函数返回值为[m,n],若不存在这样的m和n(例如整个数组是有序的),请返回[-1,-1]。
示例:
输入:[1, 2, 4, 7, 10, 11, 7, 12, 6, 7, 16, 18, 19]
输出:[3,9]
思路
找出逆序对: 从左侧向右遍历, 寻找逆序对; 从右侧向左遍历, 寻找逆序对
题解
/**
* 时间复杂度: O(n)
* [1,2,4,7,10,11,7,12,6,7,16,18,19]
* 思路: 找出逆序对
* 从左侧向右遍历,寻找逆序对
* 从右侧向左遍历,寻找逆序对
*/
public int[] subSort(int[] nums) {
if(nums.length == 0) return new int[]{-1,-1};
int numsLen = nums.length;
int max = nums[0];
int min = nums[numsLen-1];
int lIndex = -1; //最左侧逆序对的索引位置
int rIndex = -1; //最右侧逆序对的索引位置
/**
* 为什么在遍历过程中需要更新 max和 min的值?
* 因为: 例: [1,5,4,3,2,6,7,6,8]
* 如上例, 如果不更新 max, 那么数组[5,8]范围内数据的逆序对将无法检测出来;
*/
for (int i = 1; i < numsLen; i++) {
if(nums[i] >= max){
max = nums[i];
}else{
rIndex = i;
}
int j = numsLen-1-i;
if(nums[j] <= min){
min = nums[j];
}else{
lIndex = j;
}
}
return new int[]{lIndex,rIndex};
}
总结
数组为升序, 那么设置并更新max, 如果nums[i+1]小于max, 那么存在逆序对(nums[i],nums[i+1]); 一个数组中只要存在逆序对, 那么该数组一定不是有序的