交叉验证的几种验证方法(Cross-Validation)
普通验证方法:将原始数据分为训练集和测试集两部分,利用训练集训练分类器,然后利用测试集验证模型,记录分类准确率为分类器的性能指标。没有真正做到交叉验证,这样做得到的准确率高低与原始数据的划分有很大关系。2折交叉验证(2-fold Cross Validation)将数据集分为两个大小相等的子集,分别作为训练集和测试集进行分类器的训练。这样做训练样本相对整体数据集过小,不足以代表整个样本集。K折交叉验证(k-fold Cross Validation)将原始数据分为k组,将其中一个子集数据分别做为测试
原创
2020-11-07 17:53:12 ·
6620 阅读 ·
0 评论