There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3] nums2 = [2] The median is 2.0
Example 2:
nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5
C/C++
double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
double sum = 0.0;
int total = nums1Size + nums2Size;
int pos2 = total / 2;
int pos1 = pos2 - (total%2==0);
int i = 0,s1 = 0,s2 = 0;
while(s1<nums1Size&&s2<nums2Size&&i<=pos2)
{
int tmp = nums1[s1]<nums2[s2]?nums1[s1++]:nums2[s2++];
if(i>=pos1)sum+=tmp;
++i;
}
while(s1<nums1Size&&i<=pos2)
{
if(i>=pos1)sum+=nums1[s1];
++s1;
++i;
}
while(s2<nums2Size&&i<=pos2)
{
if(i>=pos1)sum+=nums2[s2];
++s2;
++i;
}
return pos1==pos2?sum:sum*5/10;
}
Java
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
double sum = 0.0;
int nums1Size = nums1.length;
int nums2Size = nums2.length;
int total = nums1Size + nums2Size;
int pos2 = total / 2;
int pos1 = pos2 - (total%2==0?1:0);
int i = 0,s1 = 0,s2 = 0;
while(s1<nums1Size&&s2<nums2Size&&i<=pos2)
{
int tmp = nums1[s1]<nums2[s2]?nums1[s1++]:nums2[s2++];
if(i>=pos1)sum+=tmp;
++i;
}
while(s1<nums1Size&&i<=pos2)
{
if(i>=pos1)sum+=nums1[s1];
++s1;
++i;
}
while(s2<nums2Size&&i<=pos2)
{
if(i>=pos1)sum+=nums2[s2];
++s2;
++i;
}
return pos1==pos2?sum:sum*5/10;
}
}
Python
class Solution:
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
s = 0.0
nums1Size = len(nums1)
nums2Size = len(nums2)
total = nums1Size + nums2Size
pos2 = total // 2
pos1 = pos2-1 if total%2==0 else pos2
i,s1,s2 = 0,0,0
while s1<nums1Size and s2<nums2Size and i<=pos2:
tmp = nums1[s1]
if nums1[s1]>nums2[s2]:
tmp = nums2[s2]
s2 += 1
else: s1 += 1
if i>=pos1:s += tmp
i += 1
while s1<nums1Size and i<=pos2:
if i>=pos1:s += nums1[s1]
s1 += 1
i += 1
while s2<nums2Size and i<=pos2:
if i>=pos1:s += nums2[s2]
s2 += 1
i += 1
return s if pos1==pos2 else s*5/10