自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 opengauss、GaussDB数据库安装-详细教程

本文详细介绍了opengauss安装的过程,以及在安装过程中可能会碰到的一些问题,依照本文的顺序进行安装,可以保证最后安装成功。基于虚拟机安装openEuler。1.1、具体下载地址:https://repo.openeuler.org/openEuler-20.03-LTS/ISO/x86_64/openEuler-20.03-LTS-x86_64-dvd.iso镜像下载完成之后,可根据下面链接中的内容在虚拟机环境下安装openEuler系统、配置yum源、安装常用的软件:如wget。具体安

2020-07-23 16:41:33 16020 8

原创 调用百度翻译API,翻译文本-python实现

首先需要在百度翻译API官网进行注册,需要有一个百度账户,这里面注册时候选择个人用户就可以了,这样就不用填写服务器IP地址了,注册内容较为简单,略过。注册好之后,进入个人服务中心,申请信息的下面就是你的ID和密钥。下面你需要下载一下百度官方给的demo,这是基于python2写的 需要进行改造之后才能使用。我直接将修改好的代码粘贴过来,亲测可以直接跑着用。import ...

2020-03-10 11:36:07 1896 1

原创 Task08:文本分类;数据增强;模型微调

这次只说说模型微调部分的内容吧,因为之前在使用BERT的时候,需要进行模型微调,但是当时不明白微调到底要怎么去做,最近这段时间虽然也学习了模型微调这部分内容,但是还是很迷糊,先把他们教程里面的内容给拿出来放到下面,以后用。9.2 微调在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型。我们还描述了学术界当下使用最广泛的大规模图像数据集Imag...

2020-02-23 15:24:30 253

原创 优化算法进阶;word2vec;词嵌入进阶

优化算法部分太迷糊了,几道题错完了,打个卡。把错题解析放上去。11.6 Momentum在 Section 11.4 中,我们提到,目标函数有关自变量的梯度代表了目标函数在自变量当前位置下降最快的方向。因此,梯度下降也叫作最陡下降(steepest descent)。在每次迭代中,梯度下降根据自变量当前位置,沿着当前位置的梯度更新自变量。然而,如果自变量的迭代方向仅仅取决于自变量当前位置,...

2020-02-22 11:17:36 1005

原创 批量归一化和残差网络;凸优化;梯度下降

归一化在画分布图的时候经常要用到。而在神经网络中使用归一化,我理解的还不够深刻,确切来说应该算是不理解吧。我也看了看几个人的博客,给分享一下:Pytorch中 nn.BatchNorm2d() 归一化操作动手学深度学习之从批量归一化和残差网络、凸优化、梯度下降上面的第二个链接已经吧这三节的内容都包括了。下面我只展示一些练习题中的错误:1.nn.BatchNorm2d(6)的含义...

2020-02-21 16:47:21 781

原创 TASK05-卷积神经网络基础-AlexNet-Lexnet

卷积神经网络基础-主要是一些概念性的内容,一做题目,几乎全部错误了,悲剧呀。 把题目和解析放下面。1.假如你用全连接层处理一张256×256256 \times 256256×256的彩色(RGB)图像,输出包含1000个神经元,在使用偏置的情况下,参数数量是:6553600165537000196608001196609000答案解释...

2020-02-18 09:59:04 1174

原创 TASK04-注意力机制-机器翻译-Transformer

将注意力机制放到这里,以后会用到。注意力机制在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态。将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列。然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的...

2020-02-17 14:52:25 1074

原创 Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

写这个名字有一点标题党的意思哈,为了能够被搜索引擎检索到。下面进入正题,主要是以描述性语言加代码的形式说出我目前的理解,可能在理解过程中会有偏差,请见谅哈。过拟合和欠拟合:过拟合,顾名思义,就是模型在训练的过程中过度拟合了训练数据,从而改变数据集的时候,该模型的效果变得不那么好了。 我们可以理解为,一个学生,如果他整天只顾学习,而且仅仅是学习课本以内的知识,他把课本上面所有的知识点都看过,...

2020-02-16 15:24:08 724 1

原创 nltk分词器编写-语言模型-循环神经网络相关理解

今天学习的内容是文本预处理、语言模型、循环神经网了的内容,主要是有以下内容:1、分词,索引,建立词语到index的映射2、一种语言模型,两种表示。两种采样方式3、循环神经网络理解,侧重理解,代码为辅助。首先来说说分词的事情,分词,顾名思义,就是将句子分成单个词语,另外去掉所有的标点符号。教程中给出的分词函数较为简单,而且分词后的效果也不太好,这里我写了一个简单的分词器可以供大家参考...

2020-02-13 15:17:09 693

原创 softmax-逻辑回归从零开始实现,对其理解

softmax回归,它的作用是让一组数字或者是对象之间的差异变得更大。 相差不大的几个数字,1,2,3,经过softmax变换之后,变成“[0.09003057 0.24472847 0.66524096]”,从上述的变换中可以明显看出,两两之间的差异变得更大了。至于为什么要在分类问题中引入softmax,个人的理解是“为了最大化差异”。 引用教程中的例子:直接使用输出层的输出有两个问题:...

2020-02-11 18:37:30 575

原创 d2lzh动手学深度学习-pytorch-d2lzh_pytorch

之前在学习深度学习的时候,一直这个包困扰着我,看了看网上的资源,找了找,给大家分享一下。如果有需要的请拿走,不谢。import collectionsimport mathimport osimport randomimport sysimport tarfileimport timeimport zipfilefrom tqdm import tqdmfrom IPyt...

2020-02-11 17:25:01 5371 5

原创 机器学习学习-线性回归-从零开始实现

近期在跟小伙伴一起 结对学习深度学习,《动手学习深度学习》这本书还是挺推荐的。本篇博客是我第一篇博客,也是学习的第一课,一个简单的线性回归从0开始实现。过程较为简单,直接上代码吧。import torchfrom matplotlib import pyplot as pltimport numpy as npimport randomfrom torch import cuda...

2020-02-11 12:25:23 297

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除