- 博客(23)
- 收藏
- 关注
原创 说一说Redis中如何使用一致性哈希算法
Redis一致性哈希算法解析:从传统哈希到分布式优化 本文系统性地介绍了Redis中一致性哈希算法的原理与实现。首先通过传统哈希算法在节点扩容时的痛点引入问题,详细讲解了一致性哈希的环状结构设计及其平滑扩容优势。随后剖析了Redis Cluster采用的16384槽位变种实现,以及虚拟节点技术如何解决数据分布不均问题。文章还对比了一致性哈希的优缺点,并通过社交平台缓存案例展示了实际应用场景。最后总结了渐进式扩容等最佳实践,为构建高可用Redis集群提供了实用指导。
2025-06-12 14:39:42
511
原创 Redis的哨兵模式底层实现
Redis哨兵模式的高可用实现机制解析:哨兵系统通过分布式心跳检测(PING/PONG)监控Redis节点状态,采用主观下线(SDOWN)和客观下线(ODOWN)双重确认机制判定故障。当主节点故障时,哨兵使用类Raft算法选举新主,考虑数据完整性和优先级等因素,通常在10秒内完成切换。文章详细剖析了哨兵发现节点和选举新主的7个关键步骤,并给出部署建议:至少3个哨兵节点、跨物理机部署、合理调整超时参数及定期演练。理解哨兵底层机制有助于构建生产级高可用Redis架构。
2025-06-12 08:30:00
759
原创 Redis的主从复制底层实现
《Redis主从复制机制全解析:从初始化到数据同步》摘要: 本文以印刷车间为比喻,深入剖析Redis主从复制的底层实现机制。首先介绍了两种配置主从复制的方式(配置文件与运行时命令),详细讲解了复制初始化的5个关键步骤。重点分析了全量复制(RDB快照)和增量复制(积压缓冲区)的工作流程及适用场景,强调了大数据集全量复制的注意事项。最后解读了命令传播机制和心跳检测原理,提供了不同规模集群的配置建议。通过本文,读者可以全面掌握Redis主从复制的实现细节,构建高性能、高可用的Redis系统。
2025-06-11 17:00:00
1138
原创 Redis的高可用方案有哪些?你们是怎么进行选择的?
在实际开发中,Redis作为关键基础设施,一旦故障可能导致整个系统瘫痪。大家在实际工作中有没有遇到过这样的场景:促销活动期间Redis突然宕机,导致用户无法下单?或者主节点故障后,数据长时间无法恢复?根据我的经验,这些问题都可以通过合理的高可用方案解决。今天,我们就来全面探讨Redis的高可用方案。很多人知道Redis Sentinel(哨兵),但不一定了解其他高级方案和选择策略。通过本文,你将掌握从基础主从复制到云原生方案的全套解决方案。
2025-06-11 08:45:00
1038
原创 Redis持久化策略介绍,以及如何选择?
Redis持久化策略主要包括RDB快照和AOF日志两种方式。RDB通过定期保存数据快照实现高效备份,适合容忍少量数据丢失的场景;AOF记录每个写操作,提供更完整的数据保护,适合对数据一致性要求高的业务。Redis 4.0+还支持混合模式,结合两者的优势。生产环境中应根据业务需求、数据重要性、性能要求等因素选择合适的策略,并做好监控配置。合理的持久化设置能够平衡数据安全性与系统性能。
2025-06-10 17:30:00
1727
原创 Redis的过期策略和淘汰策略
Redis数据管理策略深度解析 本文详细探讨了Redis的过期策略和淘汰策略,通过超市商品管理的生动比喻,解析了Redis如何高效管理数据生命周期。文章分为三部分:首先介绍定时删除、惰性删除和定期删除三种过期策略及其适用场景;然后分析8种淘汰策略,重点对比LRU和LFU算法差异;最后提供实战配置指南,结合电商平台、新闻应用等案例,分享优化经验。作者建议根据业务特点选择合适的策略组合,通过监控关键指标持续优化,可提升Redis性能30%-50%。文章强调合理配置过期和淘汰策略对系统性能的重要性,为开发者提供了
2025-06-10 09:10:09
1141
原创 Redis为什么这么快?深入解析高性能背后的秘密
Redis高性能的秘密:内存存储、高效数据结构和单线程模型 本文深入解析了Redis实现高速性能的三大核心机制。首先,Redis基于内存存储,读写速度比磁盘快10万倍,在电商秒杀场景中可将QPS从200提升到5000+。其次,Redis提供精心优化的数据结构,如用Set处理社交关系,比传统数据库JOIN更高效。最后,Redis采用单线程和I/O多路复用模型,能轻松支持10万+并发连接,特别适合实时聊天系统。文章还总结了其他优化策略,并给出了合理使用Redis的建议。这些技术组合使Redis成为缓存、计数器、
2025-06-09 18:00:00
984
原创 说说Redis的基本数据结构类型
来聊聊Redis这个高性能的键值数据库。就像我们日常生活中使用的工具箱一样,Redis也提供了多种"工具"(数据结构)来帮助我们解决不同的问题。那么,Redis到底有哪些基本的数据结构类型呢?让我们一起来探索吧!
2025-06-09 09:30:00
1019
原创 解决limit 1000000加载慢的问题
通过今天的讨论,我们了解了使用索引覆盖优化查询采用游标分页技术预计算和缓存常用结果对大数据表进行分区使用专门的搜索引擎在实际应用中,我们需要根据具体场景选择合适的方案,或者组合使用多种技术。希望这些经验能帮助大家在工作中解决类似的问题。如果你有更好的解决方案或实践经验,欢迎随时交流分享!
2025-06-08 19:15:00
1151
原创 深入解析:为什么数据库索引偏爱B+树而非二叉树?
一天一个小知识点,今天我们要探讨一个数据库领域的基础但至关重要的话题:索引数据结构的选择。就像城市交通规划需要精心设计道路网络一样,数据库也需要高效的数据结构来组织索引。那么,为什么主流数据库都选择了B+树而不是看似简单的二叉树呢?让我们一起来解开这个谜题。
2025-06-08 09:45:00
1069
原创 史上最全MyISAM和InnoDB比较
就像城市交通系统从固定信号灯发展到智能交通一样,数据库技术也在不断进步。十年前MyISAM可能在某些场景下是合理选择,但今天InnoDB在绝大多数情况下都是更优解。希望通过本文的比较,大家能够根据自己项目的具体需求,做出明智的存储引擎选择。记住,没有放之四海而皆准的解决方案,只有最适合当前场景的技术选型。如果你在实际工作中遇到过有趣的存储引擎选择案例,或者对本文内容有任何疑问,欢迎随时交流讨论。让我们共同探索MySQL的更多可能性!
2025-06-07 14:00:00
1260
原创 面试官:说一说你知道的分库分表?
数据库分库分表设计摘要 随着业务数据增长,单一数据库面临性能瓶颈,分库分表成为关键解决方案。分库是将数据分散到多个数据库(水平或业务分库),分表则拆分大表为小表(水平或垂直分表)。电商平台案例展示了具体应用:用户表按ID哈希水平分表,订单表按时间分库+用户ID分表,商品表垂直拆分基础与详情信息。实施时需注意分布式事务、跨库JOIN等挑战,遵循选择合适分片键、避免过度拆分等最佳实践。分库分表可显著提升系统性能,但需要根据业务需求合理设计。
2025-06-07 10:00:00
962
原创 是时候和IDEA说再见了,Cursor,我来了
《从IntelliJ IDEA转向Cursor:AI时代的新编程体验》 本文分享了从IntelliJ IDEA转向Cursor编辑器的经验体会。Cursor作为专为AI辅助编程设计的工具,具有三大核心优势:1)深度集成的AI助手,支持自然语言交互和智能代码生成;2)更轻量级的性能表现;3)现代化的UI设计。通过商品搜索API的案例展示了Cursor如何显著提升开发效率。文章也客观指出了Cursor对大型项目支持不足等局限性,并给出了渐进式迁移建议。Cursor代表了IDE发展的新方向,特别适合快速原型开发,
2025-06-06 21:26:47
897
原创 面试题:日常工作中你是怎么优化SQL的?
在日常开发工作中,SQL优化就像城市交通管理一样重要。想象一下,如果城市的交通信号灯设置不合理,道路就会拥堵不堪;同样,如果我们的SQL查询没有经过优化,数据库性能就会急剧下降,整个系统响应变慢。今天,我们就来探讨一下SQL优化的那些事儿。
2025-06-06 16:14:46
607
原创 MySQL遇到过死锁问题吗,你是如何解决的?
MySQL死锁问题分析与解决方案:死锁是数据库并发场景下的常见问题,当多个事务循环等待资源时就会发生。本文通过电商系统案例,分析了典型死锁场景(事务以相反顺序访问相同资源),并提出了五大解决方案:分析死锁日志、优化索引设计、调整隔离级别、统一事务顺序以及拆分大事务。此外,介绍了应用层重试机制和减少死锁的实战经验(保持事务简短、避免交互式操作等)。掌握这些方法能够有效预防和解决MySQL死锁问题。
2025-06-06 15:47:38
1092
原创 面试题:你知道索引有哪些类型吗?
本文系统介绍了数据库索引的类型及特点。首先说明索引的本质是"数据目录",通过B+树或哈希结构实现快速查询。B+树适合范围查询,层级清晰;哈希索引适合精确匹配,查询速度快。接着按功能分类详细讲解了7种索引:普通索引(加速查询)、唯一索引(保证唯一性)、主键索引(特殊唯一索引)、组合索引(多列联合)、覆盖索引(避免回表)、全文索引(文本搜索)以及函数索引(基于表达式)。每种索引都配有创建语法和查询示例,帮助理解其应用场景。文章通过类比和案例说明,使复杂概念易于理解,是掌握数据库索引的实用指南
2025-06-05 16:43:09
764
原创 SpringMVC全流程解析
Spring MVC请求处理流程解析 本文解析了Spring MVC处理HTTP请求的完整流程:从Tomcat服务器接收请求,到DispatcherServlet分发,再到Controller方法执行和视图渲染。关键步骤包括:1)Tomcat封装请求为HttpServletRequest;2)DispatcherServlet通过HandlerMapping找到执行链;3)HandlerAdapter调用Controller方法;4)ViewResolver解析视图并渲染。文章通过源码分析展示了请求如何从浏
2025-06-03 11:12:29
1403
原创 你真的会写技术文档吗?
技术文档的写作技巧与受众分析 摘要:本文基于8年开发经验,系统分析了技术文档的写作要点。首先强调明确文档受众的重要性,将读者分为终端用户、开发人员、运维人员等6类,针对不同群体推荐对应的文档类型和写作方法。对于技术人员文档,提出了结构化写作框架,包括模块化设计、简洁表达、术语统一等技巧,同时建议使用图表辅助说明。文章还指出文档需要持续维护更新,推荐结合版本控制和协作工具,并以Python/Kubernetes等优秀文档为例。最后强调技术文档应视为产品的重要组成部分,通过建立文档文化促进知识共享。
2025-06-02 21:41:21
582
原创 Spring中如何解决循环依赖,三级缓存傻傻分不清楚?
三级缓存本身就是为了解决我们的实际的代码开发中的循环依赖的问题,我相信大家一定遇到过让人头疼的循环依赖。但是,请不要过度的深究其中的实现,我们只知道他是作用是什么,他的底层逻辑是什么就行了,如果在某些业务场景中能用到其中的逻辑,或者说,你能去往这个方向去思考,那说明这个知识点你才是真正的理解了
2025-06-02 19:56:20
931
原创 一文搞定Spring生命周期
摘要 本文深入解析Spring框架中Bean的生命周期管理机制,通过幼儿园类比形象化地阐述了从实例化到销毁的全过程。主要内容包括: 生命周期概述:将Bean比作幼儿园小朋友,介绍实例化(入园)、依赖注入(分配座位)、初始化(晨检)、使用期(上课)和销毁(放学)五个核心阶段。 容器管理机制:Spring容器作为"智能幼儿园",通过BeanDefinition存储元数据,控制Bean的创建流程,包括构造方法调用、属性注入和回调接口执行。 关键阶段详解: 实例化阶段:通过BeanDefinit
2025-06-01 21:39:21
615
原创 面试官必问:你知道AOP底层源码的实现吗?
AOP源码解析与执行流程 摘要:本文深入分析了Spring AOP的实现机制,从代理类加载到方法执行的全流程。代理类通过BeanPostProcessor在bean初始化后阶段创建,核心流程包含:1)检查bean是否需要代理;2)获取适用的增强器;3)通过ProxyFactory创建代理对象(根据条件选择JDK或CGLIB)。方法调用时,代理类会触发InvocationHandler,执行拦截器链并最终调用目标方法。整个过程体现了Spring将AOP逻辑与IoC容器深度集成的设计思想,开发者只需关注业务逻辑
2025-06-01 11:29:53
1005
原创 面试官:说一说你对AOP知道多少?
本文摘要: 本文深入讲解了Spring中的动态代理机制及其AOP实现。首先回顾了两种代理方式:JDK动态代理(基于接口)和CGLIB代理(基于继承),并介绍了Spring自动选择代理的策略。重点阐述了AOP的核心概念,通过日志功能的案例对比展示了AOP如何将横切关注点(如日志、性能监控)与业务逻辑解耦。最后详细演示了AOP的具体使用方式,包括定义切入点、各类通知(@Before/@After/@Around等)的实现,体现了AOP在提升代码模块化和可维护性方面的优势。文章通过代码示例和通俗比喻,帮助读者理解
2025-05-31 14:52:03
849
原创 呕心沥血,万字长文说清楚Spring中代理。
另外还有一些碎碎念,虽然在本文中,是基于在实际应用中的一些总结,但是,我还是希望大家能有一些发散性的思维,不要形成思维定式,比如:虽然我们说CGLIB用于动态代理没有接口的类,难道就不能代理有接口的类?了解一个知识点的真正底层。当你熟读上面的代码时,恭喜你,你已经见到了Java代理中的静态代理,显而易见,在特点出能看到静态代理类的局限性,“如果新增方法,代理类也要跟着改。在日常的开发中,除了JDK自带的动态代理类,还有就是CGLIB的动态代理类,这个是Spring整合的第三方库,还是用奶茶店的例子来阐述。
2025-05-31 14:49:05
794
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人