精心整理的堆排序,并配图加代码,方便理解,实属不易,但是难免不了存在纰漏,感谢大家的指正与理解!觉的写的不错的小伙伴儿,一键三连支持一下,后期会有持续更新!!抱拳了罒ω罒
1. 堆排序的介绍
堆排序是一种树形选择排序方法,其特点是:在排序过程中,将L[1…n]视为一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或最小)的元素。
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:

同时,我们对上图大顶堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子:

该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]
2. 性能
- 时间复杂度:平均情况下的时间复杂度为O(nlogn)。最好的情况是O(nlogn),最坏情况下时间复杂度为O(nlogn)。
- 空间复杂度:它是一种原地排序,空间复杂度为O(1)。
- 稳定性:不稳定的算法
3. 举例说明
堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了
3.1 构造初始堆。将给定无序序列构造成一个大顶堆
- 假设给定无序序列结构如下

- 此时我们从最后一个非叶子结点开始(叶结点自然不用调整,最后一个非叶子结点 arr.length/2 - 1,也就是下面的6结点),从左至右,从下至上进行调整。

- 找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

此时,我们就将一个无需序列构造成了一个大顶堆。
3.2 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
- 将堆顶元素9和末尾元素4进行交换

- 重新调整结构,使其继续满足堆定义
6. 再将堆顶元素8与末尾元素5进行交换,得到第二大元素8
7. 后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

4. 代码示范
public class Test{
public static void main(String[] args) {
int[]nums = {5,3,6,9,10,3,1};
heapSort(nums);
for (int num : nums) {
System.out.print(num + " ");
}
}
public static void heapSort(int[]nums){
//从最后一个非叶子节点开始调整堆。
for(int i = nums.length / 2 - 1;i >= 0;i--){
adjustHeap(nums,i,nums.length - 1);
}
//每次将第一个值与最后一个值交换,然后再调整堆,最终排序完成
for(int i = nums.length - 1;i >= 0;i--){
swap(nums,0,i);
adjustHeap(nums,0,i - 1);
}
}
/**
* 堆的调整
* @param nums 待排序数组
* @param i 将要调整的节点
* @param high 本次调整时数组的最后一个元素的位置
*/
public static void adjustHeap(int[]nums,int i,int high){
//i的左子节点为2*i+1
for(int k = 2 * i + 1;k <= high;k = 2 * k + 1){
//k表示子节点的最大值的索引
if(k + 1 <= high && nums[k + 1] > nums[k])k++;
//如果子节点大于父节点,将k和i互换
if(nums[k] > nums[i]){
swap(nums,i,k);
i = k;
}else break;//否则直接结束运行
}
}
public static void swap(int[]nums,int i,int j){
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
结果:
1 3 3 5 6 9 10
再简单总结下堆排序的基本思路:
a.将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
b.将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
25万+

被折叠的 条评论
为什么被折叠?



