第1章 Impala的基本概念
1.1 什么是Impala
Cloudera公司推出,提供对HDFS、Hbase数据的高性能、低延迟的交互式SQL查询功能。
基于Hive,使用内存计算,兼顾数据仓库、具有实时、批处理、多并发等优点。
是CDH平台首选的PB级大数据实时查询分析引擎。
1.2 Impala的优缺点
1.3 Impala的组成
1.4 Impala的运行原理
Impala执行查询的具体过程:
1)当用户提交查询前,Impala先创建一个负责协调客户端提交的查询的Impalad进程,该进程会向Impala State Store提交注册订阅信息,State Store会创建一个statestored进程,statestored进程通过创建多个线程来处理Impalad的注册订阅信息。
2)用户通过CLI客户端提交一个查询到impalad进程,Impalad的Query Planner对SQL语句进行解析,生成解析树;然后,Planner把这个查询的解析树变成若干PlanFragment,发送到Query Coordinator.
3)Coordinator通过从元数据库中获取元数据,从HDFS的名称节点中获取数据地址,以得到存储这个查询相关数据的所有数据节点。
4)Coordinator初始化相应impalad上的任务执行,即把查询任务分配给所有存储这个查询相关数据的数据节点。
5)Query Executor通过流式交换中间输出,并由Query Coordinator汇聚来自各个impalad的结果。
6) Coordinator把汇总后的结果返回给CLI客户端。
第2章 Impala的安装
2.1 Impala的地址
- Impala的官网
http://impala.apache.org/ - Impala文档查看
http://impala.apache.org/impala-docs.html - 下载地址
http://impala.apache.org/downloads.html
2.2 Impala的安装方式
Impala有两种安装方式: - 手动安装。
- CDH安装(推荐)。
下面我们使用Cloudera Manager安装Impala:
1)在主页中点击添加服务
2)选择Impala服务
3)进行角色分配
注意:最好将StateStore和CataLog Sever单独部署在同一节点上。
4)配置Impala
5)启动Impala
6)安装成功
2.3 Impala 的监护管理
可以通过下面的链接来访问Impala的监护管理页面:
1.查看StateStore
http://hadoop102:25020/
2.查看Catalog
http://hadoop102:25010/
2.4 Impala的初体验
1.启动Impala
[root@hadoop102 ~]# impala-shell
2.查看数据库
[hadoop102:21000] > show databases;
3.打开默认数据库
[hadoop102:21000] > use default;
4.显示数据库中的表
[hadoop102:21000] > show tables;
5.创建一张student表
[hadoop102:21000] > create table student(id int, name string)
> row format delimited
> fields terminated by ‘\t’;
6.向表中导入数据
[hadoop103:21000] > load data inpath ‘/student.txt’ into table student;
注意:
- 关闭(修改hdfs的配置dfs.permissions为false)或修改hdfs的权限,否则impala没有写的权限
[hdfs@hadoop103 ~]$ hadoop fs -chmod 777 / - Impala不支持将本地文件导入到表中
7.查询
[hadoop103:21000] > select * from student;
8.退出impala
[hadoop103:21000] > quit;
第3章 Impala的操作命令
3.1 Impala的外部shell
选项 描述
-h, --help 显示帮助信息
-v or --version 显示版本信息
-i hostname, --impalad=hostname 指定连接运行 impalad 守护进程的主机。默认端口是 21000。
-q query, --query=query 从命令行中传递一个shell 命令。执行完这一语句后 shell 会立即退出。
-f query_file, --query_file= query_file 传递一个文件中的 SQL 查询。文件内容必须以分号分隔
-o filename or --output_file filename 保存所有查询结果到指定的文件。通常用于保存在命令行使用 -q 选项执行单个查询时的查询结果。
-c 查询执行失败时继续执行
-d default_db or --database=default_db 指定启动后使用的数据库,与建立连接后使用use语句选择数据库作用相同,如果没有指定,那么使用default数据库
-r or --refresh_after_connect 建立连接后刷新 Impala 元数据
-p, --show_profiles 对 shell 中执行的每一个查询,显示其查询执行计划
-B(–delimited) 去格式化输出
–output_delimiter=character 指定分隔符
–print_header 打印列名
- 连接指定hadoop103的impala主机
[root@hadoop102 datas]# impala-shell -i hadoop103 - 使用-q查询表中数据,并将数据写入文件中
[hdfs@hadoop103 ~]$ impala-shell -q ‘select * from student’ -o output.txt - 查询执行失败时继续执行
[hdfs@hadoop103 ~]$ vim impala.sql
select * from student;
select * from stu;
select * from student;
[hdfs@hadoop103 ~]$ impala-shell -f impala.sql;
[hdfs@hadoop103 ~]$ impala-shell -c -f impala.sql; - 在hive中创建表后,使用-r刷新元数据
hive> create table stu(id int, name string);
[hadoop103:21000] > show tables;
Query: show tables
±--------+
| name |
±--------+
| student |
±--------+
[hdfs@hadoop103 ~]$ impala-shell -r
[hadoop103:21000] > show tables;
Query: show tables
±--------+
| name |
±--------+
| stu |
| student |
±--------+ - 显示查询执行计划
[hdfs@hadoop103 ~]$ impala-shell -p
[hadoop103:21000] > select * from student;
所谓执行计划,即在查询sql执行之前,先对该sql做一个分析,列出需要完成这一项查询的详细方案: - 去格式化输出
[root@hadoop103 ~]# impala-shell -q ‘select * from student’ -B --output_delimiter="\t" -o output.txt
[root@hadoop103 ~]# cat output.txt
1001 tignitgn
1002 yuanyuan
1003 haohao
1004 yunyun
3.2 Impala的内部shell
选项 描述
help 显示帮助信息
explain 显示执行计划
profile (查询完成后执行) 查询最近一次查询的底层信息
shell 不退出impala-shell执行shell命令
version 显示版本信息(同于impala-shell -v)
connect 连接impalad主机,默认端口21000(同于impala-shell -i)
refresh 增量刷新元数据库
invalidate metadata 全量刷新元数据库(慎用)(同于 impala-shell -r)
history 历史命令 - 查看执行计划
explain select * from student; - 查询最近一次查询的底层信息
[hadoop103:21000] > select count(*) from student;
[hadoop103:21000] > profile; - 查看hdfs及linux文件系统
[hadoop103:21000] > shell hadoop fs -ls /;
[hadoop103:21000] > shell ls -al ./; - 刷新指定表的元数据
hive> load data local inpath ‘/opt/module/datas/student.txt’ into table student;
[hadoop103:21000] > select * from student;
[hadoop103:21000] > refresh student;
[hadoop103:21000] > select * from student; - 查看历史命令
[hadoop103:21000] > history;
第4章 Impala的数据类型
Hive数据类型 Impala数据类型 长度
TINYINT TINYINT 1byte有符号整数
SMALINT SMALINT 2byte有符号整数
INT INT 4byte有符号整数
BIGINT BIGINT 8byte有符号整数
BOOLEAN BOOLEAN 布尔类型,true或者false
FLOAT FLOAT 单精度浮点数
DOUBLE DOUBLE 双精度浮点数
STRING STRING 字符系列。可以指定字符集。可以使用单引号或者双引号。
TIMESTAMP TIMESTAMP 时间类型
BINARY 不支持 字节数组
注意:Impala虽然支持array,map,struct复杂数据类型,但是支持并不完全,一般处理方法,将复杂类型转化为基本类型,通过hive创建表。
第5章 DDL数据定义
5.1 创建数据库
1.创建命令
CREATE DATABASE [IF NOT EXISTS] database_name
[COMMENT database_comment]
[LOCATION hdfs_path];
注:Impala不支持WITH DBPROPERTIE…语法 - 错误演示
[hadoop103:21000] > create database db_hive
> WITH DBPROPERTIES(‘name’ = ‘ttt’);
Query: create database db_hive
WITH DBPROPERTIES(‘name’ = ‘ttt’)
ERROR: AnalysisException: Syntax error in line 2:
WITH DBPROPERTIES(‘name’ = ‘ttt’)
^
Encountered: WITH
Expected: COMMENT, LOCATION
5.2查询数据库
5.2.1显示数据库
[hadoop103:21000] > show databases;
[hadoop103:21000] > show databases like ‘hive*’;
Query: show databases like ‘hive*’
±--------±--------+
| name | comment |
±--------±--------+
| hive_db | |
±--------±--------+
[hadoop103:21000] > desc database hive_db;
Query: describe database hive_db
±--------±---------±--------+
| name | location | comment |
±--------±---------±--------+
| hive_db | | |
±--------±---------±--------+
5.2.2删除数据库
[hadoop103:21000] > drop database hive_db;
[hadoop103:21000] > drop database hive_db cascade;
注:
Impala不支持alter database语法
当数据库被 USE 语句选中时,无法删除
5.3创建表
5.3.1 管理表
[hadoop103:21000] > create table if not exists student2(
> id int, name string
> )
> row format delimited fields terminated by ‘\t’
> stored as textfile
> location ‘/user/hive/warehouse/student2’;
[hadoop103:21000] > desc formatted student2;
5.3.2 外部表
[hadoop103:21000] > create external table stu_external(
> id int,
> name string)
> row format delimited fields terminated by ‘\t’ ;
5.4分区表
5.4.1 创建分区表
[hadoop103:21000] > create table stu_par(id int, name string)
> partitioned by (month string)
> row format delimited
> fields terminated by ‘\t’;
5.4.2 向表中导入数据
[hadoop103:21000] > alter table stu_par add partition (month=‘201810’);
[hadoop103:21000] > load data inpath ‘/student.txt’ into table stu_par partition(month=‘201810’);
[hadoop103:21000] > insert into table stu_par partition (month = ‘201811’)
> select * from student;
注意:
如果分区没有,load data导入数据时,不能自动创建分区。
5.4.3 查询分区表中的数据
[hadoop103:21000] > select * from stu_par where month = ‘201811’;
5.4.4 增加多个分区
[hadoop103:21000] > alter table stu_par add partition (month=‘201812’) partition (month=‘201813’);
5.4.5 删除分区
[hadoop103:21000] > alter table stu_par drop partition (month=‘201812’);
5.4.5查看分区
[hadoop103:21000] > show partitions stu_par;
第6章 DML数据操作
6.1 数据导入(基本同hive类似)
注意:impala不支持load data local inpath…
6.2 数据的导出
1.impala不支持insert overwrite…语法导出数据
2.impala 数据导出一般使用 impala -o
[root@hadoop103 ~]# impala-shell -q ‘select * from student’ -B --output_delimiter="\t" -o output.txt
[root@hadoop103 ~]# cat output.txt
1001 tignitgn
1002 yuanyuan
1003 haohao
1004 yunyun
Impala 不支持export和import命令
第7章 查询
- 基本的语法跟hive的查询语句大体一样
- Impala不支持CLUSTER BY, DISTRIBUTE BY, SORT BY
- Impala中不支持分桶表
- Impala不支持COLLECT_SET(col)和explode(col)函数
- Impala支持开窗函数
[hadoop103:21000] > select name,orderdate,cost,sum(cost) over(partition by month(orderdate)) from business;
第8章 函数
8.1 自定义函数
1.创建一个Maven工程Hive
2.导入依赖
org.apache.hive
hive-exec
1.2.1
3.创建一个类
package com.atguigu.hive;
import org.apache.hadoop.hive.ql.exec.UDF;
public class Lower extends UDF {
public String evaluate (final String s) {
if (s == null) {
return null;
}
return s.toLowerCase();
}
}
4.打成jar包上传到服务器/opt/module/jars/udf.jar
5. 将jar包上传到hdfs的指定目录
hadoop fs -put hive_udf-0.0.1-SNAPSHOT.jar /
6. 创建函数
[hadoop103:21000] > create function mylower(string) returns string location ‘/hive_udf-0.0.1-SNAPSHOT.jar’ symbol=‘com.atguigu.hive_udf.Hive_UDF’;
7. 使用自定义函数
[hadoop103:21000] > select ename, mylower(ename) from emp;
8.通过show functions查看自定义的函数
[hadoop103:21000] > show functions;
Query: show functions
±------------±----------------±------------±--------------+
| return type | signature | binary type | is persistent |
±------------±----------------±------------±--------------+
| STRING | mylower(STRING) | JAVA | false |
±------------±----------------±------------±--------------+
第9章 存储和压缩
文件格式 压缩编码 Impala是否可直接创建 是否可直接插入
Parquet Snappy(默认), GZIP; Yes 支持:CREATE TABLE, INSERT, 查询
Text LZO,gzip,bzip2,snappy Yes. 不指定 STORED AS 子句的 CREATE TABLE 语句,默认的文件格式就是未压缩文本 支持:CREATE TABLE, INSERT, 查询。如果使用 LZO 压缩,则必须在 Hive 中创建表和加载数据
RCFile Snappy, GZIP, deflate, BZIP2 Yes. 仅支持查询,在 Hive 中加载数据
SequenceFile Snappy, GZIP, deflate, BZIP2 Yes. 仅支持查询,在 Hive 中加载数据
注:impala不支持ORC格式
1.创建parquet格式的表并插入数据进行查询
[hadoop104:21000] > create table student2(id int, name string)
> row format delimited
> fields terminated by ‘\t’
> stored as PARQUET;
[hadoop104:21000] > insert into table student2 values(1001,‘zhangsan’);
[hadoop104:21000] > select * from student2;
2.创建sequenceFile格式的表,插入数据时报错
[hadoop104:21000] > insert into table student3 values(1001,‘zhangsan’);
Query: insert into table student3 values(1001,‘zhangsan’)
Query submitted at: 2018-10-25 20:59:31 (Coordinator: http://hadoop104:25000)
Query progress can be monitored at: http://hadoop104:25000/query_plan?query_id=da4c59eb23481bdc:26f012ca00000000
WARNINGS: Writing to table format SEQUENCE_FILE is not supported. Use query option ALLOW_UNSUPPORTED_FORMATS to override.
第10章 优化
1、 尽量将StateStore和Catalog单独部署到同一个节点,保证他们正常通行。
2、 通过对Impala Daemon内存限制(默认256M)及StateStore工作线程数,来提高Impala的执行效率。
3、 SQL优化,使用之前调用执行计划
4、 选择合适的文件格式进行存储,提高查询效率。
5、 避免产生很多小文件(如果有其他程序产生的小文件,可以使用中间表,将小文件数据存放到中间表。然后通过insert…select…方式中间表的数据插入到最终表中)
6、 使用合适的分区技术,根据分区粒度测算
7、 使用compute stats进行表信息搜集,当一个内容表或分区明显变化,重新计算统计相关数据表或分区。因为行和不同值的数量差异可能导致impala选择不同的连接顺序时,表中使用的查询。
[hadoop104:21000] > compute stats student;
Query: compute stats student
±----------------------------------------+
| summary |
±----------------------------------------+
| Updated 1 partition(s) and 2 column(s). |
±----------------------------------------+
8、 网络io的优化:
–a.避免把整个数据发送到客户端
–b.尽可能的做条件过滤
–c.使用limit字句
–d.输出文件时,避免使用美化输出
–e.尽量少用全量元数据的刷新
9、 使用profile输出底层信息计划,在做相应环境优化