- 博客(12)
- 收藏
- 关注
原创 解决module ‘keras.backend‘ has no attribute ‘image_dim_ordering‘
解决module 'keras.backend' has no attribute 'image_dim_ordering'if K.image_dim_ordering() == 'tf':AttributeError: module 'keras.backend' has no attribute 'image_dim_ordering'改为K.image_data_format()且“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。..
2021-11-03 14:45:46
2015
原创 解决Expected Ptr<cv::legacy::Tracker> for argument ‘newTracker‘问题
解决多目标检测中Expected Ptrcv::legacy::Tracker for argument 'newTracker’问题
2021-10-09 10:33:37
1782
4
原创 python中获取多进程返回值
from multiprocessing import Pooldef add(n): s = 0 for i in range(n): s += 1 print(f'子进程{n}') return slists = [1, 2, 3, 4, 5]results = []pool = Pool(processes=5) for n in lists: result = pool.apply_async(add, (n,)) results.append(result)pool
2021-07-29 12:19:01
4581
1
原创 符号熵(附matlab代码)
符号熵 固定时间间隔下对系统进行采样取值的方法来追踪系统动态,熵是计算系统中包含可用信息大小的方法,可以用来度量系统的不确定性,从而描述符号的复杂性。 符号熵将数据转化为少量的符号模式,虽然失去了大量信息,但保留了动态系统的周期性,...
2020-02-27 17:46:34
5159
原创 DataWhale学习笔记全连接层与卷积层批量归一化处理
批量归一化(BatchNormalization)对输入的标准化(浅层模型)处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。标准化处理输入数据使各个特征的分布相近批量归一化(深度模型)利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。1.对全连接层做批量归一化位置:全连接层中的仿射变换和激活函数之间。全连接:...
2020-02-25 20:17:08
2222
原创 DataWhale学习笔记过拟合、欠拟合及其解决方案
过拟合,欠拟合 在模型的评估和调整过程中,往往会遇到过拟合和欠拟合的问题,这也是及其学习中的经典问题,但在目前的任务中仍然会出现过拟合等问题,对于常用的解决方法,总结如下。 在解释上述现象之前,我们需要区分训练误差(training...
2020-02-19 12:39:24
149
原创 DataWhale学习笔记线性回归
线性回归模型 线性回归是机器学习中最为基础和理解的模型,但很多的模型都是建立在该模型之上。在模型的构建中,线性回归的目的是求解数据集中特征属性X以及类别Y之间的映射关系。通过优化函数(本文采用随机梯度下降法)降低模型预测值与Y之间的差别。 &...
2020-02-14 19:30:50
255
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人