【题目描述】
一天Extense在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由n * n的格点组成,每个格点只有2种状态,.和#,前者表示可以通行后者表示不能通行。同时当Extense处在某个格点时,他只能移动到东南西北(或者说上下左右)四个方向之一的相邻格点上,Extense想要从点A走到点B,问在不走出迷宫的情况下能不能办到。如果起点或者终点有一个不能通行(为#),则看成无法办到。
【输入】
第1行是测试数据的组数k,后面跟着k组输入。每组测试数据的第1行是一个正整数n (1 ≤ n ≤ 100),表示迷宫的规模是n * n的。接下来是一个n * n的矩阵,矩阵中的元素为.或者#。再接下来一行是4个整数ha, la, hb, lb,描述A处在第ha行, 第la列,B处在第hb行, 第lb列。注意到ha, la, hb, lb全部是从0开始计数的。
【输出】
k行,每行输出对应一个输入。能办到则输出“YES”,否则输出“NO”。
【输入样例】
2
3
.##
…#
#…
0 0 2 2
5
…
###.#
…#…
###…
…#.
0 0 4 0
【输出样例】
YES
NO
迷宫这种题目我一直认为是很简单的,今天在讨论的时候发现,原来很多同学不是那么容易理解的,主要是两点:
其一:方向(上下左右四个方向),方向坐标的先后顺序有关系吗?(没关系,当我什么也没问 )
其二:回溯,需要将状态置为初始状态(0)?(不需要,完全没意义,因为不需要再去那条路,当我什么都没问 )
下面进入正解。
#include<bits/stdc++.h>
using namespace std;
#define N 105
char a[N][N];
bool f[N][N];
int n, ha, la, hb, lb;
int dx[4] = {0,1,0,-1};
int dy[4] = {1,0,-1,0};
bool in(int x, int y){//判断是否在范围内
return x>=0 && x<n && y>=0 && y<n;
}
bool dfs(int ha, int la){//bool类型:代表能否从起点走到终点
if(ha == hb && la == lb)//判断:当前状态是否为终点,如果是,直接返回true
return true;
for(int i=0; i<4; i++){//不是终点,往上下左右 四个方向搜索
int tx = ha+dx[i];//求:相邻点x坐标
int ty = la+dy[i];//求:相邻点y坐标
if(in(tx, ty) && f[tx][ty] == 0 && a[tx][ty] == '.'){//判断:新的状态是否合法,满足三条件
f[ha][la] = 1;//标记:访问过
if(dfs(tx, ty))//搜索
return true;
}
}
return false;//如果这个点的相邻点都无法到达终点,那么这个点肯定也无法到达终点。
}
int main(){
int k;
cin >> k;
while(k--){
cin >> n;
for(int i=0; i<n; i++){
for(int j=0; j<n; j++){
cin >> a[i][j];
}
}
cin >> ha >> la >> hb >> lb;
memset(f, 0, sizeof(f));
f[ha][la] = 1;
if(dfs(ha, la) == true)
cout << "YES" << endl;
else
cout << "NO" << endl;
}
}
走过路过,不要错过,用你的金手指点个赞再走,祝你AC连连~