LeetCode——851.喧闹和富有

通过万岁!!!

  • 题目:给定一个二维数组richer大小为(n*2),其中n表示有n个人,每一行表示一个贫富差距。richer[i][0]的人是比richer[i][1]富有的。但是人有钱了,说话声音就大。quiet中存储了每个人的说话声音。我们最终的工作是返回一个数组ans,ans[i]表示比i这个人有钱,但是最安静的人是谁。
  • 特别提醒:
    • 如果richer中没有说比i有钱的人,那么默认我自己最有钱,其实也就是返回我自己就可以。
    • 如果richer中是空的时候,那么我们直接将quiet排序后返回即可。

下面先说一种思路,但是这种时间复杂度太高了,这种时间复杂度直接无法通过。

  • 思路:找到比i有钱的人,然后看看里面谁最安静。因为有钱是一种层级关系,A比B有钱,B比C有钱,则A一定比C又钱。我们就需要递归遍历。然后放到一个set中,这样就不会重复了。
  • 技巧:
    • 主要是放在set中。

伪代码——主函数

如果richer是空的话,将quiet升序排列,然后返回。
定义当前的quiet的最小值quietMin
定义需要返会的数组。
for遍历有多少人,人数就是quiet的长度,因为每个人都给了音量
    初始化set集合
    调用函数找比i有钱的人,存在set中
    初始化最有钱和最安静的人是自己,这样如果集合是空,那么就返回自己。
    for遍历set集合
        如果音量小于当前最小值,则将ans的i改为当前这个集合中的值(也就是这个人是当前比我有钱的并且最安静的人),并且更新quietMin
最后return ans即可

伪代码——递归函数,主要是找比person有钱的人,存在set集合中

for遍历richer的行  
    如果richer[i][1] == person,表示richer[i][0]就是比person有钱的人,那就将这个人存在集合中,然后递归找比richer[i][0]还有钱的(深度遍历)。

java代码

class Solution {
    public int[] loudAndRich(int[][] richer, int[] quiet) {
        if (richer.length == 0) {
            Arrays.sort(quiet);
            return quiet;
        }
        int quietMin;
        int ans[] = new int[quiet.length];
        for (int i = 0; i < quiet.length; i++) {// 找比第i个人有钱的人
            HashSet<Integer> hashSet = new HashSet<>();
            getMoreRich(richer, i, hashSet);
            ans[i] = i;
            quietMin = quiet[i];
            for (Integer integer : hashSet) {
                if (quiet[integer] < quietMin) {
                    quietMin = quiet[integer];
                    ans[i] = integer;
                }
            }
        }
        return ans;
    }
    void getMoreRich(int[][] richer, int person, HashSet<Integer> hashSet) {
        for (int i = 0; i < richer.length; i++) {
            if (richer[i][1] == person) {
                hashSet.add(richer[i][0]);
                getMoreRich(richer, richer[i][0], hashSet);
            }
        }
    }
}

哎,但是上面的方法时间复杂度太高了。主要原因是我们每次都要找到比这个人有钱的人。而这个过程存在很多重复。
改良版:

  • 我们可以定义一个map,用来记录我们是否遍历过这个人,或者说,我们是否遍历过比这个人高的。

伪代码

思路还是不变的,只不过我们定义一个map,查看是不是遍历过了
就是在递归的时候,判断是不是我们已经找过了,比person有钱的人。如果有的话,就返回这个set可以了。
否则的话,开始找,这里需要初始化一个内部的set,这个set最后返回,里面存储的就是比person有钱的人。
并且,这个过程也需要递归,递归的返回的set要和本层的set合并。

java代码

class Solution {
    Map<Integer, HashSet<Integer>> map = new HashMap<>();

    public int[] loudAndRich(int[][] richer, int[] quiet) {
        if (richer.length == 0) {
            Arrays.sort(quiet);
            return quiet;
        }
        int quietMin;
        int ans[] = new int[quiet.length];
        for (int i = 0; i < quiet.length; i++) {// 找比第i个人有钱的人
            HashSet<Integer> hashSet = getMoreRich(richer, i);
            ans[i] = i;
            quietMin = quiet[i];
            for (Integer integer : hashSet) {
                if (quiet[integer] < quietMin) {
                    quietMin = quiet[integer];
                    ans[i] = integer;
                }
            }
        }
        return ans;
    }

    HashSet<Integer> getMoreRich(int[][] richer, int person) {
        if (map.containsKey(person)) {// 直接合并两个集合
            return (HashSet<Integer>) map.get(person);
        }
        HashSet<Integer> hashSetCurr = new HashSet<>();
        for (int i = 0; i < richer.length; i++) {
            if (richer[i][1] == person) {
                hashSetCurr.add(richer[i][0]);
                HashSet<Integer> downHashSet = getMoreRich(richer, richer[i][0]);
                hashSetCurr.addAll(downHashSet);// 合并两个集合
            }
        }
        map.put(person, (HashSet<Integer>) hashSetCurr);
        return hashSetCurr;
    }
}

再升级一下,我们不使用集合,而是直接让递归返回的就是比person人有钱,并且安静的人,我们依旧放在map中。
java代码

class Solution {
    Map<Integer, Integer> map = new HashMap<>();// 比第key更有钱,并且更安静的人value
    int[][] richers;
    int[] quiets;

    public int[] loudAndRich(int[][] richer, int[] quiet) {
        if (richer.length == 0) {
            Arrays.sort(quiet);
            return quiet;
        }
        richers = richer;
        quiets = quiet;
        int ans[] = new int[quiet.length];
        for (int i = 0; i < quiet.length; i++) {// 找比第i个人有钱的人
            ans[i] = getMoreRich(i);
        }
        return ans;
    }


    Integer getMoreRich(int person) {
        if (map.containsKey(person)) {
            return map.get(person);
        }
        int quietMin = quiets[person];// 最安静值的先是自己
        int ans = person;// 最安静的人也是自己
        int temp;
        for (int i = 0; i < richers.length; i++) {
            if (richers[i][1] == person) {
                if (quiets[richers[i][1]] < quietMin) {
                    ans = richers[i][1];
                    quietMin = quiets[richers[i][1]];
                }
                temp = getMoreRich(richers[i][0]);// 比richers[i][0]更有钱的
                if (quiets[temp] < quietMin) {
                    ans = temp;
                    quietMin = quiets[temp];
                }
            }
        }
        map.put(person, ans);
        return ans;
    }
}
  • 总结:速度有一点提升,因为少了一层集合的遍历,但是还是不快,应该是方法存在一定的问题。在这里只能喊一声通过万岁了。
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值