08 图解剑指Offer 青蛙跳台阶 Java题解
题目链接
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
题解:
思路: 斐波那契额数列问题,此题前n项和公式 f(n) = f(n - 1) + f(n -2) (n>=3)
注意此题 target = 0 结果为0, target = 1 结果为 1 ,target = 2 结果为2 与普通斐波那契额数列不同,n从3开始。
根据公式可以用递归解决此类问题,但是太耗费时间不推荐,递归的思想是重复的解决子问题。
故采用记忆优化的算法,将递归子问题的结果存入hashMap中,就可以避免重复计算子问题的结果。计算f(n) 需要计算f(n -1) f(n- 2) ,f(n -1) 和 f(n -2)的计算也要以此类推。
又因为f(n) = f(n -1) + f(n - 2) 故最后只需要三个变量a,b,sum,遍历数列,在依次将和改为下一个和,即可实现。sum = a +b a = b b = sum。 最后 返回 a即可
图解:
代码:
public class Solution {
public int JumpFloor(int target) {
if(target == 0 || target == 1) return target;
int a = 1, b = 2, sum;
for(int i = 2;i < target; i++) {
sum = a + b;
a = b;
b = sum;
}
return b;
}
}
复杂度
空间复杂度: 空间复杂度为O(1) 三个int型空间。
最坏时间复杂度: 遍历时间复杂度O(n)