torch.max(tensor_data,dim)

本文详细介绍了PyTorch中的torch.max函数,包括如何使用它来找到矩阵中每一行或每一列的最大值及其索引。通过示例展示了torch.max(a,1)如何返回每行最大值及对应的列索引,以及torch.max(a,0)如何返回每列最大值及对应的行索引。这些操作在深度学习和数据分析中十分常见,对于理解和优化代码性能至关重要。
摘要由CSDN通过智能技术生成
a = torch.Tensor([[1,2,3,4]
                 ,[5,3,1,4]])

tensor([[1., 2., 3., 4.],
        [5., 3., 1., 4.]])

torch.max(a,1)返回每一行中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引)

torch.max(a,dim=1)

torch.return_types.max(
values=tensor([4., 5.]),
indices=tensor([3, 0]))

torch.max(a,0)返回每一列中最大值的那个元素,且返回索引(返回最大元素在这一列的行索引)。返回的最大值和索引各是一个tensor,一起构成元组(Tensor, LongTensor)

torch.max(a,dim=0)

torch.return_types.max(
values=tensor([5., 3., 3., 4.]),
indices=tensor([1, 1, 0, 0]))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值