算法第一部分(4)

有向带权图最短路径问题

单源最短路径:从一点到其他所有点的最短路径问题
松弛操作:尝试经过这个节点绕一下是不是不经过这个节点所得的最短路径还要短

dijkstra 算法

前提:图中不能有负权边
复杂度O(ElogV)
确定新的节点的最短路径后,进行松弛操作

// Dijkstra算法求最短路径
public class Dijkstra<Weight extends Number & Comparable> {

    private WeightedGraph G;           // 图的引用
    private int s;                     // 起始点
    private Number[] distTo;           // distTo[i]存储从起始点s到i的最短路径长度
    private boolean[] marked;          // 标记数组, 在算法运行过程中标记节点i是否被访问
    private Edge<Weight>[] from;       // from[i]记录最短路径中, 到达i点的边是哪一条
                                       // 可以用来恢复整个最短路径

    // 构造函数, 使用Dijkstra算法求最短路径
    public Dijkstra(WeightedGraph graph, int s){

        // 算法初始化
        G = graph;
        assert s >= 0 && s < G.V();
        this.s = s;
        distTo = new Number[G.V()];
        marked = new boolean[G.V()];
        from = new Edge[G.V()];
        for( int i = 0 ; i < G.V() ; i ++ ){
            distTo[i] = 0.0;
            marked[i] = false;
            from[i] = null;
        }

        // 使用索引堆记录当前找到的到达每个顶点的最短距离
        IndexMinHeap<Weight> ipq = new IndexMinHeap<Weight>(G.V());

        // 对于其实点s进行初始化
        distTo[s] = 0.0;
        from[s] = new Edge<Weight>(s, s, (Weight)(Number)(0.0));
        ipq.insert(s, (Weight)distTo[s] );
        marked[s] = true;
        while( !ipq.isEmpty() ){
            int v = ipq.extractMinIndex();

            // distTo[v]就是s到v的最短距离
            marked[v] = true;

            // 对v的所有相邻节点进行更新
            for( Object item : G.adj(v) ){
                Edge<Weight> e = (Edge<Weight>)item;
                int w = e.other(v);
                // 如果从s点到w点的最短路径还没有找到
                if( !marked[w] ){
                    // 如果w点以前没有访问过,
                    // 或者访问过, 但是通过当前的v点到w点距离更短, 则进行更新
                    if( from[w] == null || distTo[v].doubleValue() + e.wt().doubleValue() < distTo[w].doubleValue() ){
                        distTo[w] = distTo[v].doubleValue() + e.wt().doubleValue();
                        from[w] = e;
                        if( ipq.contain(w) )
                            ipq.change(w, (Weight)distTo[w] );
                        else
                            ipq.insert(w, (Weight)distTo[w] );
                    }
                }
            }
        }
    }

    // 返回从s点到w点的最短路径长度
    Number shortestPathTo( int w ){
        assert w >= 0 && w < G.V();
        assert hasPathTo(w);
        return distTo[w];
    }

    // 判断从s点到w点是否联通
    boolean hasPathTo( int w ){
        assert w >= 0 && w < G.V() ;
        return marked[w];
    }

    // 寻找从s到w的最短路径, 将整个路径经过的边存放在vec中
    Vector<Edge<Weight>> shortestPath( int w){

        assert w >= 0 && w < G.V();
        assert hasPathTo(w);

        // 通过from数组逆向查找到从s到w的路径, 存放到栈中
        Stack<Edge<Weight>> s = new Stack<Edge<Weight>>();
        Edge<Weight> e = from[w];
        while( e.v() != this.s ){
            s.push(e);
            e = from[e.v()];
        }
        s.push(e);

        // 从栈中依次取出元素, 获得顺序的从s到w的路径
        Vector<Edge<Weight>> res = new Vector<Edge<Weight>>();
        while( !s.empty() ){
            e = s.pop();
            res.add( e );
        }

        return res;
    }

    // 打印出从s点到w点的路径
    void showPath(int w){

        assert w >= 0 && w < G.V();
        assert hasPathTo(w);

        Vector<Edge<Weight>> path =  shortestPath(w);
        for( int i = 0 ; i < path.size() ; i ++ ){
            System.out.print( path.elementAt(i).v() + " -> ");
            if( i == path.size()-1 )
                System.out.println(path.elementAt(i).w());
        }
    }
}

Bellman-Ford算法

复杂度O(EV)
进行V - 1次循环,每一次循环对V个顶点的每一条边进行松弛操作

// 使用BellmanFord算法求最短路径
public class BellmanFord<Weight extends Number & Comparable> {

    private WeightedGraph G;    // 图的引用
    private int s;              // 起始点
    private Number[] distTo;    // distTo[i]存储从起始点s到i的最短路径长度
    Edge<Weight>[] from;        // from[i]记录最短路径中, 到达i点的边是哪一条
                                // 可以用来恢复整个最短路径
    boolean hasNegativeCycle;   // 标记图中是否有负权环

    // 构造函数, 使用BellmanFord算法求最短路径
    public BellmanFord(WeightedGraph graph, int s){

        G = graph;
        this.s = s;
        distTo = new Number[G.V()];
        from = new Edge[G.V()];
        // 初始化所有的节点s都不可达, 由from数组来表示
        for( int i = 0 ; i < G.V() ; i ++ )
            from[i] = null;

        // 设置distTo[s] = 0, 并且让from[s]不为NULL, 表示初始s节点可达且距离为0
        distTo[s] = 0.0;
        from[s] = new Edge<Weight>(s, s, (Weight)(Number)(0.0)); // 这里我们from[s]的内容是new出来的, 注意要在析构函数里delete掉

        // Bellman-Ford的过程
        // 进行V-1次循环, 每一次循环求出从起点到其余所有点, 最多使用pass步可到达的最短距离
        for( int pass = 1 ; pass < G.V() ; pass ++ ){

            // 每次循环中对所有的边进行一遍松弛操作
            // 遍历所有边的方式是先遍历所有的顶点, 然后遍历和所有顶点相邻的所有边
            for( int i = 0 ; i < G.V() ; i ++ ){
                // 使用我们实现的邻边迭代器遍历和所有顶点相邻的所有边
                for( Object item : G.adj(i) ){
                    Edge<Weight> e = (Edge<Weight>)item;
                    // 对于每一个边首先判断e->v()可达
                    // 之后看如果e->w()以前没有到达过, 显然我们可以更新distTo[e->w()]
                    // 或者e->w()以前虽然到达过, 但是通过这个e我们可以获得一个更短的距离, 即可以进行一次松弛操作, 我们也可以更新distTo[e->w()]
                    if( from[e.v()] != null && (from[e.w()] == null || distTo[e.v()].doubleValue() + e.wt().doubleValue() < distTo[e.w()].doubleValue()) ){
                        distTo[e.w()] = distTo[e.v()].doubleValue() + e.wt().doubleValue();
                        from[e.w()] = e;
                    }
                }
            }
        }

        hasNegativeCycle = detectNegativeCycle();
    }

    // 判断图中是否有负权环
    boolean detectNegativeCycle(){

        for( int i = 0 ; i < G.V() ; i ++ ){
            for( Object item : G.adj(i) ){
                Edge<Weight> e = (Edge<Weight>)item;
                if( from[e.v()] != null && distTo[e.v()].doubleValue() + e.wt().doubleValue() < distTo[e.w()].doubleValue() )
                    return true;
            }
        }

        return false;
    }

    // 返回图中是否有负权环
    boolean negativeCycle(){
        return hasNegativeCycle;
    }

    // 返回从s点到w点的最短路径长度
    Number shortestPathTo( int w ){
        assert w >= 0 && w < G.V();
        assert !hasNegativeCycle;
        assert hasPathTo(w);
        return distTo[w];
    }

    // 判断从s点到w点是否联通
    boolean hasPathTo( int w ){
        assert( w >= 0 && w < G.V() );
        return from[w] != null;
    }

    // 寻找从s到w的最短路径, 将整个路径经过的边存放在vec中
    Vector<Edge<Weight>> shortestPath(int w){

        assert w >= 0 && w < G.V() ;
        assert !hasNegativeCycle ;
        assert hasPathTo(w) ;

        // 通过from数组逆向查找到从s到w的路径, 存放到栈中
        Stack<Edge<Weight>> s = new Stack<Edge<Weight>>();
        Edge<Weight> e = from[w];
        while( e.v() != this.s ){
            s.push(e);
            e = from[e.v()];
        }
        s.push(e);

        // 从栈中依次取出元素, 获得顺序的从s到w的路径
        Vector<Edge<Weight>> res = new Vector<Edge<Weight>>();
        while( !s.empty() ){
            e = s.pop();
            res.add(e);
        }

        return res;
    }

    // 打印出从s点到w点的路径
    void showPath(int w){

        assert( w >= 0 && w < G.V() );
        assert( !hasNegativeCycle );
        assert( hasPathTo(w) );

        Vector<Edge<Weight>> res = shortestPath(w);
        for( int i = 0 ; i < res.size() ; i ++ ){
            System.out.print(res.elementAt(i).v() + " -> ");
            if( i == res.size()-1 )
                System.out.println(res.elementAt(i).w());
        }
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值