题目如下:
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数。输入确保在 1 到 3999 的范围内。
示例 1:
输入: “III”
输出: 3
示例 2:
输入: “IV”
输出: 4
示例 3:
输入: “IX”
输出: 9
示例 4:
输入: “LVIII”
输出: 58
解释: L = 50, V= 5, III = 3.
示例 5:
输入: “MCMXCIV”
输出: 1994
解释: M = 1000, CM = 900, XC = 90, IV = 4.
解答:
public static int romanToInt(String s) {
char[] c = s.toCharArray();
int len = c.length;
int count = 0;
int temp = 0;
for (int i = 0; i < len; i++) {
switch (c[i]) {
case 'I':
if (i + 1 < len && (c[i + 1] == 'V' || c[i + 1] == 'X')) {
temp = 1;
} else {
count = count + 1;
}
break;
case 'V':
if (i != 0 && c[i - 1] == 'I') {
count = 5 - temp + count;
temp = 0;
} else {
count = count + 5;
}
break;
case 'X':
if (i != 0 && c[i - 1] == 'I') {
count = 10 - temp + count;
temp = 0;
} else if (i + 1 < len && (c[i + 1] == 'L' || c[i + 1] == 'C')) {
temp = 10;
} else {
count = count + 10;
}
break;
case 'L':
if (i != 0 && c[i - 1] == 'X') {
count = 50 - temp + count;
temp = 0;
} else {
count = count + 50;
}
break;
case 'C':
if (i != 0 && c[i - 1] == 'X') {
count = 100 - temp + count;
temp = 0;
} else if (i + 1 < len && (c[i + 1] == 'D' || c[i + 1] == 'M')) {
temp = 100;
} else {
count = count + 100;
}
break;
case 'D':
if (i != 0 && c[i - 1] == 'C') {
count = 500 - temp + count;
temp = 0;
} else {
count = count + 500;
}
break;
case 'M':
if (i != 0 && c[i - 1] == 'C') {
count = 1000 - temp + count;
temp = 0;
} else {
count = count + 1000;
}
break;
default:
// throw new IllegalArgumentException("This args not in 1~3999");
break;
}
}
if (count > 3999) {
throw new IllegalArgumentException("This args not in 1~3999");
}
return count;
}
这题不难就是有点繁琐,大家如果有更好的方法可以一起探索哦。