这题和0-1背包问题很像,但增加了限制条件,满足准确值,而非求最大值。但动态规划这一基本思想都是适用的。
定义了几个数据结构
// 总金额为i的最大硬币数
int dp[101];
// 总金额为i,最大硬币数时的各硬币具体数量
int ans[101][101];
// 记录面值为i的硬币数
int coins[101];
// 记录能否达到总金额i
bool mark[101];
// 方便输出
vector<int> output;
dp[i]代表总金额为i的最多硬币数量,dp[i] 的值可以由dp[1]到dp[i-1]的值得到。即dp[i] = max(dp[1]+1,dp[2]+1,dp[3]+1,...,dp[i-1]+1),即,dp[i] = max(dp[i-j]+1),其中1<=j<=i-1,当然还有一些限制条件:
// 条件1 i-j金额能够凑到,即mark[i-j]==true
// 条件2 i-j金额加上一个j硬币的总数大于等于(等于时根据题意选择最优)当前数量
// 条件3 j硬币数量足够
AC代码如下:
#include<stdio.h>
#include<memory.h>
#include<vector>
using namespace std;
// 总金额为i的最大硬币数
int dp[101];
// 总金额为i,最大硬币数时的各硬币具体数量
int ans[101][101];
// 记录面值为i的硬币数
int coins[101];
// 记录能否达到总金额i
bool mark[101];
// 方便输出
vector<int> output;
int main()
{
memset(coins, 0, sizeof(int) * 101);
for (int i = 0; i < 101; i++)
{
for (int j = 0; j < 101; j++)
{
ans[i][j] = 0;
}
}
memset(mark, 0, sizeof(bool) * 101);
int N, M;
scanf("%d%d", &N, &M);
for (int i = 0; i < N; i++)
{
int coin;
scanf("%d", &coin);
if (coin <= M)
{
coins[coin]++;
}
}
for (int i = 1; i <= M; i++)
{
mark[i] = false;
// 有面值为i的硬币
if (coins[i] > 0)
{
dp[i] = 1;
mark[i] = true;
ans[i][i] = 1;
}
for (int j = 1; j < i; j++)
{
// 条件1 i-j金额能够凑到
// 条件2 i-j金额加上一个j硬币的总数大于当前数量
// 条件3 j硬币数量足够
if (mark[i - j] == true && coins[j] - ans[i - j][j] > 0)
{
int flag;
if (dp[i - j] + 1 > dp[i])
{
flag = true;
}
if (dp[i - j] + 1 == dp[i])
{
for (int k = 1; k < 101; k++)
{
if (k == j)
{
if (ans[i - j][j] + 1 > ans[i][j])
{
flag = true;
break;
}
if (ans[i - j][j] + 1 < ans[i][j])
{
flag = false;
break;
}
}
if (ans[i - j][k] < ans[i][k])
{
flag = false;
break;
}
if (ans[i - j][k] > ans[i][k])
{
flag = true;
break;
}
}
}
if (dp[i - j] + 1 < dp[i])
{
flag = false;
}
if (flag)
{
mark[i] = true;
dp[i] = dp[i - j] + 1;
for (int k = 1; k < 101; k++)
{
ans[i][k] = ans[i - j][k];
}
ans[i][j]++;
}
}
}
}
if (mark[M] == false)
{
printf("No Solution\n");
}
else
{
for (int i = 1; i <= M; i++)
{
for (int j = 0; j < ans[M][i]; j++)
{
output.push_back(i);
}
}
for (int i = 0; i < output.size() - 1; i++)
{
printf("%d ", output[i]);
}
printf("%d\n", output.back());
}
return 0;
}