自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 无监督域适应的跨域梯度差异最小化

摘要带有两个不同分类器(双分类器)的对抗域适应引入UDA,在对齐不同域间分布时很有效。之前的双分类器对抗学习方法仅关注于两个不同分类器输出之间的相似度,但输出的相似性不能保证目标样本的准确率,即即使两个分类器间差异很小目标样本可能也会匹配到错误的类别。本文提出CGDM来直接最小化源域样本和目标样本生成的梯度之间的差异。特别地,梯度指示了目标样本的语义信息因此可以作为一个好的监督来提升目标样本的准确率。为了计算目标样本的梯度信号,进一步通过基于聚簇的自监督学习来得到目标伪标签。3 方法首先UDA和双分

2021-07-26 09:56:12 523

原创 Hard Class Rectification for Domain Adaption域适应中的硬类修正

摘要域适应从标签丰富和相关的域(源域)转移知识到标签稀少的域(目标域)。伪标签最近用于DA,但这一类研究仍限于伪标签不准确。本文,深入探究类内性能的不平衡性,发现类间差的性能很有可能在伪标签中进一步恶化。不仅损害整体性能而且限制了DA的应用。本文HCRPL:(1)提出自适应预测校正(APC),来校正目标样本的预测。(2)进一步考虑被校正的目标样本的预测,尤其对于那些被分到硬类的(对扰动很敏感)。为防止样本被很容易误分类,引入了暂时集(TE)和自集合(SE)来得到一致的预测。提出的方法在UDA和半监督域适

2021-07-04 21:34:54 347

原创 用鲁棒学习提升无监督图像聚类

摘要无监督图像聚类方法通常引入替代目标来间接训练模型,并会受错误预测和过自信结果的影响。为克服这些挑战,当前研究提出一个新颖的模型RUC,受鲁棒学习的启发。RUC的新颖性是在用现有图像聚类方法的伪标签时作为一个可能包含错分类样本的有噪数据集。它的重训练过程可以修改错误对齐的知识,并减轻预测中的过自信问题。这个模型的灵活结构使他可以用作好的聚类方法的一个附加模块,并帮助他们在多数据集上有更好效果。大量实验证明提出的模型可用更好的校准来调整模型置信度,并获得对抗噪声的鲁棒性。1. 引言无监督聚类,旨在辨别

2021-05-14 10:17:47 1082

原创 通过扔一个诱饵进行无源无监督域适应

摘要无监督域适应(UDA)旨在转移一个标签源域中学到的信息到一个无标记的目标域。现有的UDA方法要求适应中接触源数据,在实际应用中可能不可行。本文中,我们解决了无源无监督域适应问题(SFUDA),其中仅源模型在适应中是可用的。我们提出了一个方法叫BAIT来解决SFUDA。具体地,仅给源模型,源分类器头固定,引入了一个新的可学习分类器。当适应到目标域时,新添加分类器的类代表将作为一个bait。它们会首先接近由于域偏移而偏离源分类器原型的目标特征。然后,那些目标特征会被拉向对应的源分类器的原型,因此实现了与源

2021-03-18 16:14:03 606 6

原创 Learning to detect open classes for universal domain adaption

摘要UDA转移域间知识,不需标签集的任何限制,扩展了域适应的可用性。UDA中,源、目标标签集可能具有单独的标签不被另一个域共享。UDA挑战:对抗域偏移,分类共享类中的目标样本,更突出的:将单独的目标标签集(开放类)中的目标样本标记为"unknown"。这两个挑战使UDA成为一个高度未探究的问题。之前的UDA工作集中于共享类中数据的分类,使用每个类的准确率作为评价度量,错误地偏移了共享类的准确率。然而,准确地检测开放类是一个关键的任务来使得真实的通用域适应成功。进一步将UDA问题转为一个良好的闭集域适应问

2021-01-31 10:25:08 403

原创 Do We Really Need to Access the Source Data?SHOT

1. 引言一个简单但通用的方法:源假设转移(SHOT).SHOT假设:相同的深度神经网络模型包括一个域之间的特征加密模块和一个分类器模块(假设)。旨在学习一个目标特定的特征加密模块来生成与源数据表示对齐良好的目标数据表示,而不用接触源数据和目标数据的标签。SHOT基于以下进行设计:如果我们已经学习了目标数据的类源表示,源分类器(假设)对目标数据的分类输出应与源数据的类似,即与one-hot编码接近。因此,SHOT冻结了源假设,并通过最大化中间特征表示和分类器输出之间的互信息微调了源加密模块,因为信息最大

2021-01-26 17:27:28 855

原创 Model Adaption: Unsupervised Domain Adaption Without Source Data

用模型来进行无监督模型适应问题,只有来自源域的预训练预测模型CCC和无标签的目标数据集XtX_tXt​,目的是将CCC适应到带有XtX_tXt​的目标域。提出了一个协作类条件生成对抗网络(3C-GAN),在源数据不存在时进行模型适应。除了已有的预训练的CCC,我们的框架还包括另外两部分:鉴别器DDD匹配目标分布,随机采样的标签上的生成器GGG来产生有效的目标风格的训练样本。通过在训练过程中合并生成数据,在目标域上提升了CCC的性能,反过来还能提升GGG的生成过程。还设计了两个正则化项来防止适应模型与预训

2021-01-23 15:58:11 383 1

原创 Domain Adaption Without Source Data论文阅读笔记

1. 问题与UDA相比,训练过程中没有用到任何带标签的源样本。**UDA:**目标是最小化一个带标签源域和一个不带标签目标域之间的差异,前提是源和目标样本取自不同但相关的概率分布。**SFDA:**假设无法得到源域样本,利用源域的预训练模型。目的在于通过预训练源模型的参数和不带标签的目标域实现无监督域适应。2. SFDA框架主要包括两种模型:预训练源模型和一个可训练的目标模型。源模型包括:一个特征提取器FsF_sFs​和一个分类器CsC_sCs​,在源域预训练后这些模块的参数都是固定的。可训

2021-01-15 16:10:47 347

原创 Universal Source_free Domain Adaption论文阅读笔记

Universal Source_free Domain Adaption论文阅读笔记你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdow

2021-01-15 10:21:44 849

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除