C++一维数组——[I]机器人的逻辑(求n个数的最大公约数)

题目描述

2035年,智能机器人在各行各业中的应用已经十分普遍了,毕竟它做事时的精度与力量比一个普通人是强多了。 王涛的运输队里就有一个,是用来装卸货物的。 这天,他们的任务是要把 N(2 <= N <= 50 )根废旧的条形钢材运送到钢铁厂重新冶炼。这些钢材长短不同(有些还特别的长),为了便于运输,只好把它们切割成小段。所以,他给机器人的任务是:把这些钢材切割并装上卡车。 等机器人做完这事的时候,王涛一看结果,自己都被逗笑了:机器人的逻辑就是和人不同啊——装在车上的所有小段的钢材,居然长度都是一样的(以米为单位),而且,还是所有可行方案中,切割次数最少的那种方案! 如果告诉你最开始那N根钢材的长度,你能算出机器人切割出的小段的长度么?

输入

第一行为整数N ,表示原始钢材的数量。
第二行中是N个用空格分开的整数,表示每根废旧钢材的长度(以米为单位),已知这些整数不小于1,不超过400000。

输出

只有一个整数,表示机器人切割出来的每个小段的长度。

样例

输入 

4
4 22 8 12

输出

2

参考代码:

利用辗转相除法求前两个数的最大公约数,在把求出的数和第3、4……n个数继续辗转相除

#include <bits/stdc++.h>
using namespace std;
int N=100;
int main()
{
	int n,a[N],temp,rem;
	cin>>n;
    for(int i=0;i<n;i++)
    	cin>>a[i];
    for(int i=1;i<n;i++)
    {
    	temp = a[0];
    	//辗转相除法 
		do
    	{
    		rem=a[i]%temp;
    		a[i]=temp;
    		temp=rem;
		}while(rem);
		a[0] = a[i];  //不断更新a[0]的取值 
	}
	cout<<a[0]<<endl;  //返回最大公约数 
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值