题目描述
2035年,智能机器人在各行各业中的应用已经十分普遍了,毕竟它做事时的精度与力量比一个普通人是强多了。 王涛的运输队里就有一个,是用来装卸货物的。 这天,他们的任务是要把 N(2 <= N <= 50 )根废旧的条形钢材运送到钢铁厂重新冶炼。这些钢材长短不同(有些还特别的长),为了便于运输,只好把它们切割成小段。所以,他给机器人的任务是:把这些钢材切割并装上卡车。 等机器人做完这事的时候,王涛一看结果,自己都被逗笑了:机器人的逻辑就是和人不同啊——装在车上的所有小段的钢材,居然长度都是一样的(以米为单位),而且,还是所有可行方案中,切割次数最少的那种方案! 如果告诉你最开始那N根钢材的长度,你能算出机器人切割出的小段的长度么?
输入
第一行为整数N ,表示原始钢材的数量。
第二行中是N个用空格分开的整数,表示每根废旧钢材的长度(以米为单位),已知这些整数不小于1,不超过400000。
输出
只有一个整数,表示机器人切割出来的每个小段的长度。
样例
输入
4
4 22 8 12
输出
2
参考代码:
利用辗转相除法求前两个数的最大公约数,在把求出的数和第3、4……n个数继续辗转相除
#include <bits/stdc++.h>
using namespace std;
int N=100;
int main()
{
int n,a[N],temp,rem;
cin>>n;
for(int i=0;i<n;i++)
cin>>a[i];
for(int i=1;i<n;i++)
{
temp = a[0];
//辗转相除法
do
{
rem=a[i]%temp;
a[i]=temp;
temp=rem;
}while(rem);
a[0] = a[i]; //不断更新a[0]的取值
}
cout<<a[0]<<endl; //返回最大公约数
}