Spring Data Elasticsearch4.0(整合SpringBoot)

简介:

Spring Data Elasticsearch是Spring Data项目下的一个子模块。
查看 Spring Data的官网:链接
在这里插入图片描述

Spring Data的使命是为数据访问提供熟悉且一致的基于Spring的编程模型,同时仍保留底层数据存储的特殊特性。
它使得使用数据访问技术,关系数据库和非关系数据库,map-reduce框架和基于云的数据服务变得容易。
这是一个总括项目,其中包含许多特定于给定数据库的子项目。
这些令人兴奋的技术项目背后,是由许多公司和开发人员合作开发的。

Spring Data 的使命是给各种数据访问提供统一的编程接口,不管是关系型数据库(如MySQL),还是非关系数据库(如Redis),或者类似Elasticsearch这样的索引数据库。从而简化开发人员的代码,提高开发效率。

包含很多不同数据操作的模块:

在这里插入图片描述
Spring Data Elasticsearch的页面:链接
在这里插入图片描述
特征:

  • 支持Spring的基于@Configuration的java配置方式,或者XML配置方式
  • 提供了用于操作ES的便捷工具类**ElasticsearchTemplate**。包括实现文档到POJO之间的自动智能映射。
  • 利用Spring的数据转换服务实现的功能丰富的对象映射
  • 基于注解的元数据映射方式,而且可扩展以支持更多不同的数据格式
  • 根据持久层接口自动生成对应实现方法,无需人工编写基本操作代码(类似mybatis,根据接口自动得到实现)。当然,也支持人工定制查询

创建Demo工程:

使用Spring Data Elasticsearch 版本必须对应elasticsearch服务实例,否则会出现一些报错信息
在这里插入图片描述

在这里插入图片描述

新建一个demo,学习Elasticsearch
在这里插入图片描述
pom核心依赖:

    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter</artifactId>
    </dependency>

    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
    </dependency>

	<dependency>
		<groupId>org.springframework.boot</groupId>
		<artifactId>spring-boot-starter-test</artifactId>
		<scope>test</scope>
	</dependency>
	
	<dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
    </dependency>

application.yml文件配置(没有配置用户名和密码无需输入):

spring:
   elasticsearch:
	 rest:
	    uris: localhost:9200
	    #username: 
  	    #password:  

Spring Data Elasticsearch注解:

首先准备好实体类
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201202151106418.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM5MTQwMzAw,size_16,color_FFFFFF,t_70

Spring Data通过注解来声明字段的映射属性,有下面的三个注解:

  • @Document 在类级别应用,以指示该类是映射到数据库的候选对象。最重要的属性是:
    • indexName:对应索引库名称
    • type:映射类型。如果未设置,则使用小写的类的简单名称。(从版本4.0开始不推荐使用)
    • shards:索引的分片数
    • replicas:索引的副本数
    • refreshIntervall :索引的刷新间隔。用于索引创建。默认值为“ 1s”。
    • indexStoreType: 索引的索引存储类型。用于索引创建。默认值为“ fs”。
    • createIndex: 配置是否在存储库引导中创建索引。默认值为true。
    • versionType: 版本管理的配置。默认值为EXTERNAL。
  • @Id 作用在成员变量,标记一个字段作为id主键
  • @Transient :默认情况下,存储或检索文档时,所有字段都映射到文档,此注释不包括该字段。
  • @PersistenceConstructor: 标记从数据库实例化对象时要使用的给定构造函数,甚至是受保护的程序包。构造函数参数按名称映射到检索到的Document中的键值。
  • @Field 作用在成员变量,标记为文档的字段,并指定字段映射属性:
    • type:字段类型,取值是枚举:FieldType
    • index:是否索引,布尔类型,默认是true
    • store:是否存储,布尔类型,默认是false
    • analyzer:插入是使用分词器名称
    • searchAnalyzer :查询是使用分词器
  1. analyzer和search_analyzer的区别
    分析器主要有两种情况会被使用:

     第一种是插入文档时,将text类型的字段做分词然后插入倒排索引,
     第二种就是在查询时,先对要查询的text类型的输入做分词,再去倒排索引搜索
     如果想要让 索引 和 查询 时使用不同的分词器,ElasticSearch也是能支持的,只需要在字段上加上search_analyzer参数
     在索引时,只会去看字段有没有定义analyzer,有定义的话就用定义的,没定义就用ES预设的
     在查询时,会先去看字段有没有定义search_analyzer,如果没有定义,就去看有没有analyzer,再没有定义,才会去使用ES预设的
    

elasticsearchTemplate索引操作:

ElasticsearchTemplate中提供了创建索引并映射的API运行如下图:
在这里插入图片描述
使用kibana控制台查询映射结果:

在这里插入图片描述

删除索引:

可以根据类名或索引名删除。
w,size_16,color_FFFFFF,t_70)

使用kibana控制台查询结果:

在这里插入图片描述
index_not_found_exception(索引删除成功)

简单的CRUD:

新增
在这里插入图片描述

 public void saveCreate() {
    Product product = new Product(1L, "苹果手机",
            "手机", "苹果", 8600.00);
    //保存 第一种方式
    elasticsearchRestTemplate.save(product);
    //保存 第二种方式
    IndexQuery indexQuery = new IndexQueryBuilder()
            .withId(product.getId().toString())
            .withObject(product)
            .build();
    elasticsearchRestTemplate.index(indexQuery, IndexCoordinates.of("product"));
}

使用kibana控制台查询结果
在这里插入图片描述

  GET /product/_search
	{
	  "query": {
	    "match_all": {}
	  }
	}

批量新增
在这里插入图片描述

public void saveAllCreate() {
    List<Product> list = new ArrayList<>();
    Product product1 = new Product(1L, "小米手机",
            "手机", "小米", 3600.00);
    list.add(product1);
    Product product2 = new Product(2L, "苹果手机",
            "手机", "苹果", 8600.00);
    list.add(product2);
    Product product3 = new Product(3L, "华为手机",
            "手机", "华为", 8600.00);
    list.add(product3);
    Product product4 = new Product(4L, "小米电视",
            "电视", "小米", 18600.00);
    list.add(product4);
    Product product5 = new Product(5L, "华为电视",
            "电视", "华为", 28600.00);
    list.add(product5);
    elasticsearchRestTemplate.save(list);
}

使用kibana控制台查询结果:
在这里插入图片描述
修改和新增是同一个接口,区分的依据就是id,这一点跟我们在页面发起PUT请求是类似的。
在这里插入图片描述
把id等于1的名称修改为小米至尊版
运行:
在这里插入图片描述
查看结果:
在这里插入图片描述

高级查询:

自定义查询

先来看最基本的match query:
在这里插入图片描述
NativeSearchQueryBuilder:Spring提供的一个查询条件构建器,帮助构建json格式的请求体

  • SearchHit包含以下信息:

    • Id
    • Score 得分
    • Sort Values 排序值
    • Highlight fields 突出显示字段
    • The retrieved entity of type 检索到的类型为的实体
  • SearchHits 包含以下信息:

    • Number of total hits 总条数
    • Total hits relation 总匹配关系
    • Maximum score 最高分数
    • A list o fSearchHitobjects SearchHit对象列表
    • TReturned aggregations 返回的汇总

官方文档:
在这里插入图片描述

分页查询

利用NativeSearchQueryBuilder可以方便的实现分页:
在这里插入图片描述

字段排序

排序也通过NativeSearchQueryBuilder完成:
在这里插入图片描述

聚合

桶就是分组,比如这里我们按照品牌brand进行分组:
在这里插入图片描述
显示的结果:
在这里插入图片描述
关键APIAggregationBuilders:聚合的构建工厂类。所有聚合都由这个类来构建,看看他的静态方法:
在这里插入图片描述

嵌套聚合,求平均值

代码:
在这里插入图片描述
结果:
在这里插入图片描述

关键词高亮

@Test
public void testHighlight() {
    //分词字段/高亮字段
    String fieId = "name";
    // 构建查询条件
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // match类型查询,会把查询条件进行分词,然后进行查询,多个词条之间是or的关系
    MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery("手机电视至尊", fieId);
    multiMatchQueryBuilder.type(MultiMatchQueryBuilder.Type.BEST_FIELDS);
    multiMatchQueryBuilder.tieBreaker(0.3F);
    //应该匹配的分词的最少数量
    multiMatchQueryBuilder.minimumShouldMatch("30%");
    queryBuilder.withQuery(multiMatchQueryBuilder);
    // 排序
    queryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.DESC));
    //生成高亮查询器
    HighlightBuilder highlightBuilder = new HighlightBuilder();
    //高亮查询字段
    highlightBuilder.field(fieId);
    //如果要多个字段高亮,这项要为false
    highlightBuilder.requireFieldMatch(false);
    //高亮标签
    highlightBuilder.preTags("<font color=\"#4F4FEC\">");
    highlightBuilder.postTags("</font>");
    queryBuilder.withHighlightBuilder(highlightBuilder);
    // 执行搜索,获取结果
    SearchHits<Product> search = elasticsearchRestTemplate.search(queryBuilder.build(), Product.class);
    for (SearchHit<Product> hit : search.getSearchHits()) {
        Product content = hit.getContent();
        List<String> name = hit.getHighlightField(fieId);
        System.out.println(name);
        StringBuilder stringBuilder = new StringBuilder();
        for (String text : name) {
            stringBuilder.append(text);
        }
        content.setName(stringBuilder.toString());
    }
    //当前页数据
    search.getSearchHits().forEach(System.out::println);
}

结果:
在这里插入图片描述

才疏学浅,难免会有纰漏,如果你发现了错误的地方,可以在留言区提出来,我对其加以修改。

感谢您的阅读

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值