1.题目描述
给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]] 输出:[[7,4,1],[8,5,2],[9,6,3]]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/rotate-image
2.思路分析
用翻转操作代替旋转操作。如下所示:
作为例子,先将其通过水平轴翻转得到:
再根据主对角线翻转得到:
就得到了答案。这是为什么呢?对于水平轴翻转而言,我们只需要枚举矩阵上半部分的元素,和下半部分的元素进行交换,即
对于主对角线翻转而言,我们只需要枚举对角线左侧的元素,和右侧的元素进行交换,即
将它们联立即可得到:
3.解答
class Solution {
//水平翻转 + 主对角线翻转
public void rotate(int[][] matrix) {
int n = matrix.length;
//1.先水平翻转
for(int i = 0; i < n / 2; i++){
for(int j = 0; j < n; j++){
int temp = matrix[i][j];
matrix[i][j] = matrix[n - i - 1][j];
matrix[n - i - 1][j] = temp;
}
}
//2.再沿主对角线翻转
for(int i = 0; i < n; i++){
for(int j = 0; j < i; j++){
int temp = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = temp;
}
}
}
}
时间复杂度:O(N^2),其中 N 是 matrix 的边长。对于每一次翻转操作,我们都需要枚举矩阵中一半的元素。
空间复杂度:O(1)。为原地翻转得到的原地旋转。