高频噪声的制作思想可参考https://blog.csdn.net/qq_39148922/article/details/86609629
本文介绍数字图像高频噪声的制作,原始噪声用正态分布随机数生成
源代码如下
%数字图像高频噪声的制作
%运行参数
mLength=800;%噪声图像的宽度
nLength=600;%噪声图像的高度
ampi=0.46;%噪声的幅度
freqCut=0.34*sqrt(mLength^2+nLength^2);%高频噪声的截止频率
filterStep=3;%滤波器的阶数
%生成图像的中心距离矩阵
[u,v]=dftuv(mLength,nLength);
%滤波器的频域函数
Huv=1./(1+(freqCut^2./(u.^2+v.^2)).^filterStep);
%白噪声
whiteNoise=sqrt(ampi)*randn(mLength,nLength);
%噪声通过滤波器,得到高频噪声
highFreqNoise=dftfilt(whiteNoise,Huv);
%结果展示
figure
imshow(whiteNoise+0.5);
title('原始噪声')
figure
imshow(highFreqNoise+0.5)
title('高频噪声')
[u,v]=dftuv(mLength,nLength);
dftuv这个函数如果你的matlab工作环境中没有,可以从这里获得它的源代码:
https://blog.csdn.net/qq_39148922/article/details/86625377
在当前的工作目录里面新建一个函数,粘贴进去即可使用
这个函数的返回值[u,v]是为了滤波器频域函数的表达方便
u的图形是这样:
v的图形是这样:
从图形中也可以看出,它们分别表示横纵方向上矩阵到中心的距离
这样就可以利用两个距离矩阵表达出所需的滤波器频域函数
Huv=1./(1+(freqCut^2./(u.^2+v.^2)).^filterStep);
接下来的函数
highFreqNoise=dftfilt(whiteNoise,Huv);
函数dftfilt的行为是将参数1进行二维傅里叶变换得到频谱,再将得到的频谱和参数2相乘,相乘后进行逆傅里叶变换得到返回值
函数的源代码可从这里获得:https://blog.csdn.net/qq_39148922/article/details/86625526
至此即可获得高频噪声