Python数据预处理简单笔记持续补充

本文介绍了如何使用Python的pandas库进行数据清洗,包括处理缺失值、删除全空行、填充默认值,以及DataFrame中重复数据的删除。涉及了dropna、fillna方法和字典替换。同时展示了数据类型转换和去重操作的实例。
摘要由CSDN通过智能技术生成
import pandas as pd
import numpy as np

df1 = pd.DataFrame({
    "id": ["a1", "a2", np.nan, "a4"],
    "age": [20, 23, np.nan, 10],
    "sex": ["男", np.nan, np.nan, np.nan],
    "time": ["0101", "0202", np.nan, np.nan]
})
print(df1)
print(df1.dropna(how="all"))  # 删除所有为空的一行
print(df1.fillna(0))  # 空值填充0
print(df1.fillna({"id": "A", "age": 0, "sex": "-", "time": 0000}))  # 比较智能 用字典方式替换需要替换的
df2 = pd.DataFrame({
    "id": ["a1", "a2", "a3", "a4", "a4", "a4"],
    "age": [20, 23, 26, 10, 10, 10],
    "name": ["男", "女", "女", "男", "男", "男"],
    "time": ["0101", "0202", "0305", "0506", "0506", "0506"]
})
print(df2)
print(df2.drop_duplicates())  # 删除相同数据 但保留第一个
print(df2["time"].dtype)  # 检测数据类型
df2["time"] = df2["time"].astype("string")  # 更改标题下的数据类型
print(df2["time"].dtype)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值