给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/container-with-most-water
分析
计算方法:最大容积,也就是所谓的短板效应,底边越长,面积越大,同时需要兼顾两边的侧边,按道理是在最边缘的两条决定,矩形的宽边是两条边缘边中最短的一条
遍历方法:暴力法在图例中就有30多种,感觉会比较费时间,去评论区看很多超时的 ,最后估计要先找一个基底,从 零开找,会有很多起点,这样也不知道从哪找起,不如逆向思维,先从最大的开找 ,向内找,这样可以左右找,左右都各去一个,比较一下,取大的,之后想到两边都底边-1,那么去掉的侧边小,面积就大,关于遍历终点,就选择ij重合,左右靠拢
第一次搞了代码一个if,两边靠拢为止,但这样只能写两遍逻辑,查阅得到了这种逻辑
area = height[left] < height[right] ?
Math.max(area, (right - left) * height[left++]):
Math.max(area, (right - left) * height[right--]);
这里成立就执行第一句,反之第二句,括号里还完成了自增减
,这种逻辑值得在以后使用
完整代码及执行结果
class Solution {
public int maxArea(int[] height) {
int left = 0;
int right = height.length-1;
int area = 0;
while(left<right){
area = height[left] < height[right] ?
Math.max(area, (right - left) * height[left++]):
Math.max(area, (right - left) * height[right--]);
}
return area;
}
}