Description
在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。
这个比例就叫做黄金分割比,它是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.6180339887。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。
现在小玉有一个正整数数列,这个数列的前一项和后一项的比值十分趋近于黄金分割比,即(a[i])/(a[i+1])~ 0.6180339887,(i>=1),可是她只知道数列的第一项是5,现在她想通过已有条件推断出数列的任意项,请你帮助她编写一个程序计算。
Input
输入一个整数n(1<=n<=20)。
Output
输出一个数,代表这个数列的第n项a[n]。
Sample
Input
1
Output
5
这道题比较有意思,该数列是一个整数数列,而用黄金比例算出来的是小数,所以我们要找到里这个小数最近的整数,这里就用到了四舍五入,而四舍五入再程序中要怎样处理?
对一个小数加“0.5”,再去掉小数部分,就达到了四舍五入的效果
所以递推方程为:a[i] = ((a[i-1]/0.6180339887)+0.5);
代码一:
#include<stdio.h>
#include<stdlib.h>
int main(){
int i, n;
int a[20];
scanf("%d", &n);
a[0] = 5;
for(i = 1; i < n; i++){
a[i] = ((a[i - 1] / 0.6180339887) +0.5);
}
printf("%d\n", a[n - 1]);
return 0;
}
可以通过手动计算出数列的前几项发现某种规律,请不要直接在程序中利用首项乘以黄金分割比计算第n项。
此数列与斐波那契数列有关。斐波那契数列数列 :1 1 2 3 5 8 13 。。。
代码二:
#include<stdio.h>
#include<stdlib.h>
int main(){
int i, n;
long long int a[20];
scanf("%d", &n);
a[0] = 5;
a[1] = 8;
for(i = 2; i < n; i++){
//a[i] = ((a[i - 1] / 0.6180339887) + 0.5);
a[i] = a[i - 1] + a[i - 2];
}
printf("%lld\n", a[n - 1]);
return 0;
}