C - 鬼吹灯之龙岭迷窟

Description

    在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。

    这个比例就叫做黄金分割比,它是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.6180339887。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。 

    现在小玉有一个正整数数列,这个数列的前一项和后一项的比值十分趋近于黄金分割比,即(a[i])/(a[i+1])~ 0.6180339887,(i>=1),可是她只知道数列的第一项是5,现在她想通过已有条件推断出数列的任意项,请你帮助她编写一个程序计算。

Input

输入一个整数n(1<=n<=20)。

Output

输出一个数,代表这个数列的第n项a[n]。

Sample

Input 

1

Output 

5

这道题比较有意思,该数列是一个整数数列,而用黄金比例算出来的是小数,所以我们要找到里这个小数最近的整数,这里就用到了四舍五入,而四舍五入再程序中要怎样处理?
对一个小数加“0.5”,再去掉小数部分,就达到了四舍五入的效果
所以递推方程为:a[i] = ((a[i-1]/0.6180339887)+0.5);
代码一:

 

#include<stdio.h>
#include<stdlib.h>

int main(){
    int i, n;
    int a[20];
    scanf("%d", &n);
    a[0] = 5;
    for(i = 1; i < n; i++){
        a[i] = ((a[i - 1] / 0.6180339887) +0.5);
    }
    printf("%d\n", a[n - 1]);
    return 0;
}


可以通过手动计算出数列的前几项发现某种规律,请不要直接在程序中利用首项乘以黄金分割比计算第n项。
此数列与斐波那契数列有关。斐波那契数列数列 :1 1 2 3 5 8 13 。。。

代码二:

#include<stdio.h>
#include<stdlib.h>

int main(){
    int i, n;
    long long int a[20];
    scanf("%d", &n);
    a[0] = 5;
    a[1] = 8;
    for(i = 2; i < n; i++){
        //a[i] = ((a[i - 1] / 0.6180339887) + 0.5);
        a[i] = a[i - 1] + a[i - 2];
    }
    printf("%lld\n", a[n - 1]);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员豪仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值