Description
已知二叉树的一个按先序遍历输入的字符序列,如abc,,de,g,,f,,, (其中,表示空结点)。请建立二叉树并按中序和后序的方式遍历该二叉树。
Input
连续输入多组数据,每组数据输入一个长度小于50个字符的字符串。
Output
每组输入数据对应输出2行:
第1行输出中序遍历序列;
第2行输出后序遍历序列。
Sample
Input
abc,,de,g,,f,,,
Output
cbegdfa
cgefdba
Hint
二叉树的遍历主要有三种:
(1)先(根)序遍历(根左右)
(2)中(根)序遍历(左根右)
(3)后(根)序遍历(左右根)
举个例子:
先(根)序遍历(根左右):A B D H E I C F J K G
中(根)序遍历(左根右) : D H B E I A J F K C G
后(根)序遍历(左右根) : H D I E B J K F G C A
以后(根)序遍历为例,每次都是先遍历树的左子树,然后再遍历树的右子树,最后再遍历根节点,以此类推,直至遍历完整个树。
此外,还有一个命题:给定了二叉树的任何一种遍历序列,都无法唯一确定相应的二叉树。但是如果知道了二叉树的中序遍历序列和任意的另一种遍历序列,就可以唯一地确定二叉树。
例子1:已知二叉树的后序遍历序列是dabec,中序遍历序列是debac,它的前序遍历序列是(cedba)。
(1)中序遍历:debac
后序遍历:dabec
后序遍历序列的最后一个结点是根结点,所以可知c为根结点。
中序遍历序列的根结点在中间,其左边是左子树,右边是右子树。所以从中序遍历序列中可看出,根结点c只有左子树,没有 右子树。
(2)中序遍历:deba
后序遍历:dabe
后序遍历序列的最后一个结点是根结点,所以可知e为c的左子树的根结点。
中序遍历序列的根结点在中间,其左边是左子树,右边是右子树。所以从中序遍历序列中可看出,根结点e的左子结点是d,右子树是ba。
(3)中序遍历:ba
后序遍历:ab
由后序遍历序列可知b为e的右子树的根结点。由中序遍历序列中可看出,a为根结点b的右子结点。
树的结构如下:
这道题就是考察中序和后序遍历二叉树的规则,如果是中序遍历的话,先遍历左子树,然后输出根节点,之后遍历右子树。而后序遍历则是先遍历左子树,然后是右子树,最后是根节点。其实前中后遍历的方法就是根据根节点遍历的先后顺序来决定的。此外,本题还考察了二叉树的建立,二叉树的建立实际上是充分利用了递归的思想,从根节点逐层递归到叶子结点即最深层结点。用链表进行二叉树的建立。因为不容易丢失数据。
从一串字符或者数字建立起立体的二叉树(先序),其实就是根据先序建立的特点使数据串进行立体化,先序输出二叉树就是先输出根节点,之后输出左子树,最后右子树。比如本题示例,abc,,de,g,,f,,,
a一定是根节点,之后b是a结点的左孩子,c是b的左孩子,之后两个,,(符号)是空,说明c结点是叶子结点(没有孩子)。然后回溯到b结点,d是b结点的右孩子,e是d结点的左孩子,之后的逗号(,)是表示e结点的左孩子为空,g是e结点的右孩子,之后的两个逗号(,)表示g没有孩子,即g结点是叶子结点。然后再回溯到d结点,f结点是d结点的右孩子,之后的两个逗号(,)表示f没有孩子,即f是叶子结点。再回溯到a结点,最后一个逗号(,)表示的是a结点的右孩子为空。
如图所示
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
struct node{//树节点的建立
char c;
struct node *lt, *rt;//定义左孩子和右孩子
};
int flag;
char s[50];//用s数组来作为中继数组存放数据
struct node *create(){//二叉树的建立
struct node *root;
if(s[flag] == ','){
root = NULL;//如果是符号“,”则进行空指针的处理
flag++;
}
else{//否则就将数据存放到新建立的结点中
root = (struct node *)malloc(sizeof(struct node));
root -> c = s[flag++];
root -> lt = create();
root -> rt = create();
}
return root;
}
void inorder(struct node *root){//中序遍历
if(root){
inorder(root -> lt);
printf("%c", root -> c);
inorder(root -> rt);
}
}
void postorder(struct node *root){//后序遍历
if(root){
postorder(root -> lt);
postorder(root -> rt);
printf("%c", root -> c);
}
}
int main(){
while(~scanf("%s", &s)){
struct node *root;
flag = 0;
root = create();
inorder(root);
printf("\n");
postorder(root);
printf("\n");
}
return 0;
}