A - 数据结构实验之二叉树二:遍历二叉树

Description

已知二叉树的一个按先序遍历输入的字符序列,如abc,,de,g,,f,,, (其中,表示空结点)。请建立二叉树并按中序和后序的方式遍历该二叉树。

Input

连续输入多组数据,每组数据输入一个长度小于50个字符的字符串。

Output

每组输入数据对应输出2行:
第1行输出中序遍历序列;
第2行输出后序遍历序列。

 

Sample

Input 

abc,,de,g,,f,,,

Output 

cbegdfa
cgefdba

Hint

  二叉树的遍历主要有三种:

(1)先(根)序遍历(根左右)

(2)中(根)序遍历(左根右)

(3)后(根)序遍历(左右根)

举个例子:

先(根)序遍历(根左右):A B D H E I C F J K G

中(根)序遍历(左根右) : D H B E I A J F K C G

后(根)序遍历(左右根) : H D I E B J K F G C A

以后(根)序遍历为例,每次都是先遍历树的左子树,然后再遍历树的右子树,最后再遍历根节点,以此类推,直至遍历完整个树。

此外,还有一个命题:给定了二叉树的任何一种遍历序列,都无法唯一确定相应的二叉树。但是如果知道了二叉树的中序遍历序列和任意的另一种遍历序列,就可以唯一地确定二叉树。

例子1:已知二叉树的后序遍历序列是dabec,中序遍历序列是debac,它的前序遍历序列是(cedba)。

(1)中序遍历:debac

后序遍历:dabec

后序遍历序列的最后一个结点是根结点,所以可知c为根结点。

中序遍历序列的根结点在中间,其左边是左子树,右边是右子树。所以从中序遍历序列中可看出,根结点c只有左子树,没有 右子树。

(2)中序遍历:deba

后序遍历:dabe

后序遍历序列的最后一个结点是根结点,所以可知e为c的左子树的根结点。

中序遍历序列的根结点在中间,其左边是左子树,右边是右子树。所以从中序遍历序列中可看出,根结点e的左子结点是d,右子树是ba。

(3)中序遍历:ba

后序遍历:ab

由后序遍历序列可知b为e的右子树的根结点。由中序遍历序列中可看出,a为根结点b的右子结点。

树的结构如下:

这道题就是考察中序和后序遍历二叉树的规则,如果是中序遍历的话,先遍历左子树,然后输出根节点,之后遍历右子树。而后序遍历则是先遍历左子树,然后是右子树,最后是根节点。其实前中后遍历的方法就是根据根节点遍历的先后顺序来决定的。此外,本题还考察了二叉树的建立,二叉树的建立实际上是充分利用了递归的思想,从根节点逐层递归到叶子结点即最深层结点。用链表进行二叉树的建立。因为不容易丢失数据。

从一串字符或者数字建立起立体的二叉树(先序),其实就是根据先序建立的特点使数据串进行立体化,先序输出二叉树就是先输出根节点,之后输出左子树,最后右子树。比如本题示例,abc,,de,g,,f,,,
a一定是根节点,之后b是a结点的左孩子,c是b的左孩子,之后两个,,(符号)是空,说明c结点是叶子结点(没有孩子)。然后回溯到b结点,d是b结点的右孩子,e是d结点的左孩子,之后的逗号(,)是表示e结点的左孩子为空,g是e结点的右孩子,之后的两个逗号(,)表示g没有孩子,即g结点是叶子结点。然后再回溯到d结点,f结点是d结点的右孩子,之后的两个逗号(,)表示f没有孩子,即f是叶子结点。再回溯到a结点,最后一个逗号(,)表示的是a结点的右孩子为空。

如图所示

#include<stdio.h>
#include<stdlib.h>
#include<string.h>


struct node{//树节点的建立
    char c;
    struct node *lt, *rt;//定义左孩子和右孩子
};
int flag;
char s[50];//用s数组来作为中继数组存放数据

struct node *create(){//二叉树的建立
    struct node *root;
    if(s[flag] == ','){
        root = NULL;//如果是符号“,”则进行空指针的处理
        flag++;
    }
    else{//否则就将数据存放到新建立的结点中
        root = (struct node *)malloc(sizeof(struct node));
        root -> c = s[flag++];
        root -> lt = create();
        root -> rt = create();
    }
    return root;
}

void inorder(struct node *root){//中序遍历
    if(root){
        inorder(root -> lt);
        printf("%c", root -> c);
        inorder(root -> rt);
    }
}

void postorder(struct node *root){//后序遍历
    if(root){
        postorder(root -> lt);
        postorder(root -> rt);
        printf("%c", root -> c);
    }
}

int main(){
    while(~scanf("%s", &s)){
        struct node *root;
        flag = 0;
        root = create();
        inorder(root);
        printf("\n");
        postorder(root);
        printf("\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员豪仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值